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Abstract

Underexposed image enhancement is of importance in
many research domains. In this paper, we take this prob-
lem as image feature transformation between the underex-
posed image and its paired enhanced version, and we pro-
pose a deep symmetric network for the issue. Our sym-
metric network adapts invertible neural networks (INN) for
bidirectional feature learning between images, and to en-
sure the mutual propagation invertible we specifically con-
struct two pairs of encoder-decoder with the same pre-
trained parameters. This invertible mechanism with bidi-
rectional feature transformations enable us to both avoid
colour bias and recover the content effectively for im-
age enhancement. In addition, we propose a new recur-
rent residual-attention module (RRAM), where the recur-
rent learning network is designed to gradually perform the
desired colour adjustments. Ablation experiments are exe-
cuted to show the role of each component of our new ar-
chitecture. We conduct a large number of experiments on
two datasets to demonstrate that our method achieves the
state-of-the-art effect in underexposed image enhancement.
Code is available at https://www.shaopinglu.
net/proj-iccv21/ImageEnhancement.html.

1. Introduction

Digital photography is gaining increasing popularity
thanks to the abundance of digital cameras widely used
in day-to-day life. Still, poor shooting environment, inap-
propriate camera parameters, or lack of photographic skills
can result in unsatisfactory image quality. Many times it
is necessary to adjust the exposure-aware aspects of the
photograph including the colour and local details in post-
processing.

*indicates equal contribution.

Image enhancement still remains a challenge especially
for underexposed images. To enhance the image qual-
ity, both colour adjustments are required, and preserva-
tion of the content-features of the image. Traditional al-
gorithms with global adjustments, such as histogram equal-
ization [31,40,41], contrast adjustment [18,44] and Gamma
correction [22,42] are incapable of editing and changing the
local details in the image. Recent methods based on deep
neural networks [7, 11, 21, 34, 46] can still suffer from ei-
ther colour bias or artifacts in complex underexposed con-
ditions. Specifically, when the picture is taken in a low-light
environment, the visual features are hidden in dark areas.
To correct this situation, not only colour adjustments are
needed, but also content recovery (see an example in Fig. 1).
Some methods attempt to deal with these requirements by
employing multiple different modules separately. However,
this scheme may introduce accumulated training errors, and
result in visual artifacts.

In this paper, we formulate the image enhancement prob-
lem as an unified framework of invertible feature transfor-
mation between an image pair: an underexposed image and
its enhanced version (that can be the ground truth during
training). Therefore, we propose a deep symmetric network
based on an invertible feature transformer (IFT) inspired by
the latest invertible neural networks (INN) [1, 8, 27, 48]. In
order to make the forward and backward propagation op-
erations highly solvable, two pairs of pre-trained encoder-
decoder, which exactly share the same parameters, are
specifically designed to apply the mutual conversion be-
tween the image pair ( i.e. , the underexposed and enhanced
images) and the corresponding features. Our symmetric
network carries out the forward and backward learning syn-
chronously, and successfully solves the image colour bias
problem caused by the lack of massive training data of
paired images and the difficulty of learning color features.

To accurately restore the desired features of the image,
we further propose a recurrent learning schedule with a re-
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Figure 1. The results of different methods on challenging images. DeepUPE [46] and DeepLPF [34] are the state-of-the-art methods now.
Our method can effectively adjust the image colour while ensuring the structure and texture features of the images.

current residual-attention module (RRAM). Because differ-
ent weights are assigned to different channels of the fea-
ture map, our network can focus on recovering the struc-
ture feature information. Without increasing the number of
network parameters, the recurrent learning allows our net-
work to learn the complex feature transformation in a step-
wise manner, and then realize the adjustments of the image
colour. Extensive experiments on public datasets confirm
the superiority of our method.

In summary, our contributions can be listed as follows:

• To our best knowledge, we are the first to introduce
invertible neural networks (INN) into underexposed
image enhancement. Our symmetric architecture per-
forms bidirectional feature learning synchronously,
achieving state-of-the-art results compared against
other underexposed image enhancement solutions.

• We propose a recurrent learning scheme of fea-
ture transformation with a recurrent residual-attention
module (RRAM), allowing to apply colour adjustment
gradually without increasing network parameters.

2. Related Work
Many research approaches to image enhancement have

been introduced in the last decades. Here we briefly discuss
some important works especially for underexposed image
enhancement. Besides, some most relevant methods to our
work will be referred in this section.
Image enhancement. There are many algorithms to adjust
the pixel values for image enhancement. Some traditional
algorithms propose to enhance the contrast and brightness
of the image. For instance, Ying et al. [51] use exposure fu-
sion framework to enhance image contrast. Aubry et al. [2]
employ fast local Laplacian filters to enhance details. Re-
cently, deep learning has been successfully introduced into
image enhancement. Gharbi et al. [11] introduce a bilateral
grid processing network for colour transformation. In or-
der to estimate the global priors and get satisfactory perfor-
mance, He et al. [16] propose a condition network besides

the base network. In addition, deep reinforcement learn-
ing based methods are exploited to beautify images [21,37].
Some recent work [7, 23, 24] also build upon generative ad-
versarial networks (GANs) to tackle the problem.

Specifically, many methods focus on enhancing ex-
tremely underexposed images. Because the raw images eas-
ily lose content information, various methods are proposed
to recover such content. Some of these methods also intro-
duce restoring modules to the image enhancement pipeline.
However, this class of processing mechanisms would cause
accumulated training errors. Chen et al. [5] propose an
end-to-end pipeline to avoid the training errors, focusing on
the raw sensor data instead of low-light RGB images. Xu et
al. [49] restore the low-frequency and high-frequency lay-
ers in turn, and objects are recovered in the low-frequency
layer. Besides, according to Retinex theory [28], many re-
searchers take low-light image enhancement as an illumi-
nation estimation task [14, 29, 30, 36, 47]. Recently, some
specific datasets are also introduced to adapt new training
strategies for various image enhancement tasks. For exam-
ple, Jiang et al. [25] adopt an U-Net based GAN for low-
light images from different dataset domains. Guo et al. [13]
present a network that can be trained without ground truth
to avoid the risk of overfitting. Yang et al. [50] propose
DRBN that uses semi-supervised learning to enhance im-
ages with perceptual guidance from high-quality images.

Some existing methods attempt to enhance the image
while ensuring the feature distribution of the raw image.
As an example, Wang et al. [46] design an image-to-
illumination mapping model to learn the complex image ad-
justment process. However, there is no global adjustments
to the image. Moran et al. [34] provide a novel approach
that learns spatially local filters to enhance images. How-
ever, it does not consider the global filters, and the results
might introduce some colour bias. On the contrary, our
symmetric network both maintains colour consistency and
recovers the content when performing image enhancement.

Finally, there are some other tasks such as face enhance-
ment [10, 39] and shadow enhancement [52]. Compared to



these specific topics, our work is more general for enhanc-
ing various underexposed images.

Recurrent attention model. Unlike other feed-forward
neural networks, the recurrent neural network (RNN) usu-
ally takes the sequential data as input, and it performs
with a recursive style in the evolution direction of the se-
quence [17]. RNN was originally used to solve natural lan-
guage processing problems [32,45], and recently it has been
introduced into computer vision tasks [9,12,35]. Moreover,
the recurrent attention was proposed by Mnih et al. [33] for
image classification. Subsequently, different models with
similar ideas are widely used in other tasks. For instance,
Chen et al. [6] propose a RNN-based visual attention model
to learn a sequence of views for 3D shape classification;
Haque et al. [15] introduce the recurrent attention model
into person identification; in [26] a soft attention mecha-
nism is used for object tracking, and Bendre et al. [3] put a
sequence of frames to the RNN for human action recogni-
tion [3]. To our best knowledge, we are the first to introduce
the recurrent attention scheme to the underexposed image
enhancement problem.

3. Symmetric Network

The overall architecture of our symmetric network is
shown in Fig. 2, where two-way propagation operations are
conduced during the training process. When the network
performs the forward operation (see the green dashed ar-
rows), the input image to be enhanced is processed with the
forward transformation. When the backward operation is
handled (see the red dashed arrows), the ground truth is re-
versibly transferred to its underexposed version. This sym-
metric framework makes our task highly solvable under a
bidirectional propagation style.

Our symmetric network contains an invertible feature
transformer (IFT), which is based on the latest INNs [1, 8,
27, 48]. Note that due to the lack of depth features, desired
image enhancement results could not be obtained when di-
rectly applying existing INN architectures on image patches
(further details will be given in the ablation section). This
calls for more complicated reorganization of image features
to meet the hard constraint that the two-way propagation op-
erations should be highly invertible. Therefore, we specif-
ically design two pairs of pre-trained encoder-decoder net-
works sharing the same parameters. In both propagation
sides of our system, the encoder is utilized to perform con-
version from images to their corresponding features, while
the decoder is designed to transform the features to the cor-
responding images.

For the forward propagation, we use the first pair of
encoder-decoder to convert between images and their cor-
responding features, and our IFT performs forward feature

learning. Formally, this propagation works as:

xfL1
= E1(xLQ),

xfH1
= IFT (xfL1

),

xHQf
= D1(xfH1

),

(1)

where xLQ represents the input image. xfL1
, xHQf

and
xfH1

denote the output results of the encoder, decoder
and IFT, respectively. [E1(·), D1(·)] and IFT (·) are the
forward encoder-decoder and forward feature transforma-
tion, respectively. Similarly, the second pair of encoder-
decoder and the IFT are involved in the backward propaga-
tion, which can be formulated as:

xfH2
= E2(xHQ),

xfL2
= IFTR(xfH2

),

xLQf
= D2(xfL2

),

(2)

where xHQ denotes the ground truth. xfH2
, xLQf

and xfL2

are the corresponding results, respectively. [E2(·), D2(·)]
and IFTR(·) represent the backward encoder-decoder and
backward feature transformation, respectively. Therefore,
our network preserves the consistency of the features in
both propagation directions, and the two-way constraint
solves the colour bias issue for underexposed images.

3.1. Pre-trained Encoder and Decoder

As shown in Fig. 2, we adopt a symmetric encoder-
decoder structure for the conversion between images and
their features to ensure the integrity of the involved fea-
tures. Our purpose is to make sure that the pairs of ( xfL1

,
xfL2

) and (xfH1
, xfH2

) are highly consistent, and that they
preserve the global image features, such that the structural
information of the image will be well preserved in the un-
derexposed image enhancement.

In order to make sure that the proposed framework in-
vertible, we further constrain that the parameters of the en-
coder are exactly the same as that of the decoder. In our
solution, these parameters are extracted from the first two
convolutional layers of a VGG-16 model pre-trained on Im-
ageNet [43]. Note that with more CNN layers, the global
features would be damaged, and the reconstruction results
would thus be affected.

3.2. Invertible Feature Transformer (IFT)

Underexposed images usually have the loss issue of
colour and content. To restore them correctly without arti-
facts, our IFT learns not only the forward mapping between
the low-quality to high-quality image, but also the backward
mapping from high to low. Our IFT consists of several in-
vertible blocks (8 by default). For the i-th block, the input
feature xf

i is equally divided into xf
i
1 and xf

i
2 according



ℓ𝐿𝐿

pre C
onv1

pre C
onv2

pre D
econv1

pre D
econv2

pre C
onv1

pre C
onv2

pre D
econv1

pre D
econv2

Encoder1

Decoder2 Decoder1

Encoder2

IFT ℓ𝐻𝐻

IFTIB

IB IB…RRAM
RRAM

RRAM
ES

: Element-wise addition : Element-wise multiplication :Sharing parameters

evenly split incorporate

𝑥𝑥𝑓𝑓2
1

𝑥𝑥𝑓𝑓1
1

𝑥𝑥𝑓𝑓2
2

𝑥𝑥𝑓𝑓1
2

𝑥𝑥𝑓𝑓2 𝑥𝑥𝑓𝑓𝑖𝑖

𝑥𝑥𝑓𝑓𝐿𝐿
𝑥𝑥𝑓𝑓𝐻𝐻

𝑥𝑥𝐿𝐿𝐿𝐿

𝑥𝑥𝐿𝐿𝐿𝐿𝑓𝑓

𝑥𝑥𝑓𝑓𝐻𝐻1𝑥𝑥𝑓𝑓𝐿𝐿2

𝑥𝑥𝑓𝑓𝐿𝐿1 𝑥𝑥𝑓𝑓𝐻𝐻2

𝑥𝑥𝐻𝐻𝐿𝐿𝑓𝑓

𝑥𝑥𝐻𝐻𝐿𝐿

Figure 2. Overall network architecture of our method. The green and red dashed arrows respectively represent the two-way propagation
operations of the network. preConvi and preDeconvi refer to the convolution and deconvolution using the i (i=[1, 2]) convolution layer
parameters of the pre-trained VGG-16 [43], respectively. Before the feature xf

i enters the i-th invertible block (IB), xf
i is equally divided

into xf
i
1 and xf

i
2 according to the number of channels.

to the channel number, and then passes through the trans-
formation modules:

xf
i+1
1 =

xf
i
1 − Ti,3(xf

i
2)

ES(Ti,1(xf
i
2))

,

xf
i+1
2 = xf

i
2 − Ti,2(xf

i+1
1 ),

(3)

where Ti,j(·) refers to the j-th (j=1, 2, or 3) transforma-
tion module in the i-th block. ES(·) represents the sigmoid
function followed by the exponent. We use ES(·) as a mul-
tiplier to strengthen the transformation ability. Again, when
the backward propagation happens, it is easy to draw that:

xf
i
2 = xf

i+1
2 + Ti,2(xf

i+1
1 ),

xf
i
1 = xf

i+1
1 ∗ ES(Ti,1(xf

i
2)) + Ti,3(xf

i
2).

(4)

3.3. Recurrent Residual-attention Module (RRAM)

In many pairs of the underexposed and ground truth im-
ages, there are obvious colour differences that are very dif-
ficult to overcome using existing methods. We thus in-
troduce a recurrent residual-attention module (RRAM) to
solve this problem. Considering that transformation learn-
ing of colour feature between images is still very challeng-
ing, here we adopt the RRAM as a multi-round recurrence
module, that learns the target gradually by using the atten-
tion architecture for t rounds recurrence without increasing
network parameters.

Multi-round recurrent learning. The core idea of our re-
current learning is to divide the task to be solved into sev-
eral sequential steps, and we learn color adjustment grad-
ually in the task of underexposed image enhancement. As
Fig. 3 shows, we use [h1, h2, ..., ht] to represent a sequence
of hidden states as an RNN, t is the number of recurrent
round. Moreover, the hidden state uses multiple rounds of
memory, which can store the feature information obtained
in the previous rounds. The features in our network use
element-wise addition to alleviate the learning task of each
module. Formally, for the t-th round:

ht =

{
0, if t = 1
ht−1 + xt−1

fo , otherwise , (5)

where xt−1
fo is the output of the residual soft channel atten-

tion mechanism in (t− 1)-th round. Therefore, a t-th round
recurrence is represented as:

xt
fo = fRSCA(Whh

t +Wxxfi), (6)

where RSCA presents the residual soft channel attention
mechanism, Wh and Wx denote the balanced weights. We
select Wh = Wx = 1 and t = 3. With this design,
the hidden state effectively contains the feature informa-
tion learned previously, and it can focuses on the remaining
information missed in each round. Therefore, the RRAM
model can efficiently learn the obvious colour difference
between the underexposed image and its ground truth.
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Figure 3. The structure diagram of our RRAM. The blue line repre-
sents the transfer of the hidden state. The RSCA means the resid-
ual soft channel attention mechanism. The [i, j]Conv denotes a
convolution operator with i× i kernel size and j × j stride size.

Residual soft channel attention mechanism. The resid-
ual soft channel attention mechanism is applied to make the
network concentrate more on channel-wise structure infor-
mation. As shown in Fig. 4, the mechanism firstly conducts
feature learning in the transformation as follows:

xh = fC(δ(fC(xfi))), (7)

where fC(·) and δ(·) denote the function of convolution and
Prelu, xfi and xh mean the input of the mechanism and
the obtained feature. Next, the inter-dependencies between
channels of xh are dynamically learned. To achieve it, the
global average pooling turns the C × H × W feature xh

to the C × 1 × 1 unlearned map Mi as SENet [19], which
has a global receptive field to some extent. By learning the
attention map, we automatically obtain the importance of
each feature channel:

Mo = fCS(fCR(Mi)), (8)

where fCS(·) and fCR(·) express a convolution followed
by sigmoid layer and a convolution followed by Prelu layer.
Mo is the obtained soft attention map used to multiply with
xh. In addition, we use residual learning to optimize the
network as follows:

xfo = xh ×Mo + xfi, (9)

where xfo represents the gained feature of the mechanism.
As mentioned before, the feature is equally divided into

two parts when transferred into each invertible block (i.e. ,
the purple dashed box in Fig. 2). To fully extract the fea-
ture information of channels and the relationship between
such channels, we double and restore the number of feature
channels in both the front and end of RRAM,

xfi = δ(fC(xin)), (10)

xout = fC(x
t
fo), (11)

where xin and xout indicate the input and output features of
RRAM. xfi and xt

fo are the input and the t-th output of our
attention mechanism.
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Figure 4. Our residual soft channel attention mechanism. The
pooling applies a 2D adaptive average pooling. C, H and W re-
spectively represent the number of channels, length and width of
the feature.

3.4. Loss Functions

We use the L2 distance as the training loss function in
both propagation operations. The loss function of the for-
ward propagation operation is defined as:

ℓH =
1

N

N∑
i=1

∥∥xHQf
− xHQ

∥∥2, (12)

where N represents the number of the training images. Sim-
ilarly, the backward propagation loss function is:

ℓL =
1

N

N∑
i=1

∥∥xLQf
− xLQ

∥∥2. (13)

Therefore, the final training loss is defined as a weighted
sum of two above-mentioned losses:

ℓtr = λHℓH + λLℓL, (14)

where λH and λL refer to the balanced weights. In our
training, we empirically set λH = λL = 1.

4. Experiments
Datasets. We test our network on two benchmark datasets,
which are the MIT-Adobe FiveK dataset [4] and LOL
dataset [47]. There are 5,000 low-quality images in the
MIT-Adobe FiveK dataset, and each image is processed by
five experts. We follow [7,34,37,46] to choose the adjusted
images of Expert C as ground truth. The original MIT-
Adobe FiveK dataset represents only some specific distri-
butions of underexposed images, which may lead to poor
generalization when facing large distribution change of the
input. In [37] the ground truth is pre-processed with multi-
ple random distorted operators to further synthesize various
underexposed results as the input. Here we exactly follow
this processing. The first 4,500 images and the last 500 im-
ages are used for training and testing respectively. We use
LOL dataset [47] to test the performance of our network for
extremely underexposed images. LOL dataset [47] contains
500 low/normal-light real image pairs, and we use 400 pairs
for training and 100 pairs for testing.



(f) DRBN(e) EnlightenGAN(d) LIME(c) RetinexNet(a) Input (b) Zero-DCE

(k) Distort-and-Recover(j) DPE-paired(i) HDRNet(g) KinD (h) EFF (l) White-Box
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Figure 5. The visual results of different methods for the underexposed image in the MIT-Adobe FiveK dataset [4]. Here we also show the
result of our method without recurrent learning (RL).

Implementation Details. Our network is implemented on
both Pytorch [38] and Jittor [20] platforms with one Nvidia
2080Ti GPU. For the training on each dataset, we randomly
crop the original images into 180 × 180 patches and apply
the ADAM optimizer with an initial learning rate of 2e-4.
For the MIT-Adobe FiveK dataset, the network is trained for
200 epochs and the learning rate is reduced by half every 50
epochs. For the LOL dataset, the respected epoch numbers
are 250 and 100. We utilize PSNR and SSIM as the image
quality evaluation standard for the testing. Higher PSNR
and SSIM values mean better results.

4.1. Comparison with State-of-the-art

To verify the effectiveness of our method, we compare
it with other 14 existing methods: HDRNet [11], DPE
(paired) [7], Distort-and-Recover [37], White-Box [21],
CSRNet [16] for underexposed images, Zero-DCE [13],
RetinexNet [47], LIME [14], EFF [51], Enlighten-
GAN [25], DRBN [50], KinD [53] for extremely underex-
posed images, DeepUPE [46], DeepLPF [34] for both. To
ensure the fairness of comparison, we retrain all methods.
Quantitative Comparison. We show the results of these
methods on the two datasets in Tab. 1. The three sections
from top to bottom are the methods that focus on low-
light enhancement, image retouching and both. Our method
achieves the highest values except SSIM on LOL dataset.
Qualitative Comparison. Evaluations are applied on two
datasets. We select an underexposed image from the MIT-
Adobe FiveK dataset to show the comparison with all
methods in Fig. 5. It can be seen that Zero-DCE, LIME
and White-Box have colour bias, RetinexNet, EFF, DRBN
and Distort-and-Recover fail to adjust image brightness,

Method
LOL FiveK

PSNR/SSIM PSNR/SSIM

Zero-DCE [13] 13.08/0.470 12.30/0.673
RetinexNet [47] 17.03/0.707 20.20/0.781

LIME [14] 16.92/0.540 14.30/0.731
EnlightenGAN [25] 17.79/0.769 21.28/0.818

EFF [51] 16.94/0.592 18.15/0.784
DRBN [50] 19.24/0.847 21.71/0.855
KinD [53] 20.08/0.822 21.72/0.833

HDRNet [11] 19.62/0.716 23.29/0.842
DPE (paired) [7] 18.08/0.659 21.67/0.846

Distort [37] 20.46/0.666 21.29/0.812
White-Box [21] 17.59/0.633 17.30/0.755

CSRNet [16] 19.57/0.681 24.13/0.878

DeepUPE [46] 16.78/0.468 20.83/0.795
DeepLPF [34] 16.58/0.678 23.63/0.875

w/o RL 20.63/0.826 23.32/0.888
ours 21.71/0.834 24.27/0.900

Table 1. Quantitative results of different methods on the MIT-
Adobe FiveK dataset [4] and LOL dataset [47]. “w/o RL” refers
to our method without recurrent learning and “Distort” is Distort-
and-Recover.

DeepLPF does not recover the local information. DPE-
paired and CSRNet do not adjust the image colour correctly.
EnlightenGAN, KinD, HDRNet, Distort-and-Recover and
DeepUPE produce artifacts in images that cause some tex-
ture details to disappear.

As shown in Fig. 6, we compare with the methods for im-
age retouching to show our strength in this respect. When
there is colour difference between the input and ground
truth image pair, our result is more consistent with the
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Figure 6. Comparison results with image retouching methods on the image in the MIT-Adobe FiveK dataset [4].
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Figure 7. The results of low-light image enhancement methods on the image in LOL dataset [47].

ground truth than other methods.
In addition, we compare with the low-light image en-

hancement methods on the LOL dataset, and Fig. 7 shows
the results of some extremely underexposed scenes. In
general, those results obtained from RetinexNet, DeepLPF,
KinD, and DRBN do not restore colour well. Moreover, it
reveals that some methods such as Zero-DCE, LIME, Deep-
UPE, EFF and EnlightenGAN are more likely to generate
visual artifacts. Overall, our method achieves better results
for enhancing extremely underexposed images.

4.2. Ablation Study

As shown in the Fig. 7 and Tab. 1, most methods can not
achieve satisfactory results on LOL dataset, so we use the
dataset for ablation experiments to explain in detail the role
of our each module.

In Tab. 2, we conduct experiments from three different
aspects to verify the effect of the two-way transformation
and loss, RRAM, and symmetrical architecture. For the
two-way transformation, we cancel the backward loss to
verify the intention of IFT. We also change the loss function
to l1, to maximize PSNR [7] for comparison. For RRAM,
we change it to other networks. Furthermore, we remove
the attention mechanism to evaluate the effectiveness of it,

and change the number of recurrences to justify the recur-
rent learning. To verify the role of symmetrical architec-
ture, we change the number of invertible blocks, and spe-
cially replace our pre-trained encoder-decoder with Haar
wavelets that are typically used in the previous INN-based
networks [27, 48]. The PSNR and SSIM of each variation
in Tab. 2 show that each module contributes to the perfor-
mance improvement.

To further illustrate the specific role of attention and
symmetric architecture with two-way loss, in Fig. 8 we
show the comparison results on some representative images.
Fig. 8 (b) indicates that our method fails to recover some
content once removing attention in RRAM. When the net-
work does not perform backward learning (see Fig. 8 (c)),
it causes errors in the illuminated part of image. Moreover,
the results based on Haar wavelets have obvious artifacts.

Lastly, we also verify the effectiveness of our recurrent
learning scheme. As can be seen in Fig. 5 (p)-(q) and Fig. 9
(b)-(c), when we compare the results of our network with
or without recurrent learning, it is clear that only with re-
current learning, the network can correctly learn the adjust-
ments of image colour. Also, the PSNR/SSIM value will
drop (Tab. 1) on both datasets without recurrent learning.



(a) Input (e) ours(d) Haar wavelets(b) without attention (c) with one-way loss (f) GT

Figure 8. Visual results of different ablation experiments on our method for images in LOL dataset [47].

(a) Input (b) Ours-without RL (c) Ours-with RL (d) GT

Figure 9. Visual results with/without our recurrent learning for im-
ages that obvious colour adjustments should be performed.

Condition PSNR SSIM

L2 → L1 loss -0.98 -0.024
L2 → PSNR loss -0.20 -0.007
w/o backward loss -1.28 -0.014

w/o attention -3.10 -0.038
RESBLK -3.50 -0.067

SE-RESBLK -1.32 -0.034
DenseNet -2.74 -0.039
w/o RL -1.08 -0.008

two-round RL -0.42 -0.009
4 IB -1.42 -0.026

Haar wavelets -1.74 -0.027

Table 2. Quantitative comparison of different ablation experiments
against the default setups on our method in LOL dataset [47]. Here
“RL” refers to recurrent learning, “IB” means invertible block, and
“SE-RESBLK” is the residual block embedded with SENet [19].

4.3. User Study

Image retouching performance and aesthetics are
strongly affected by individual bias and expertise. To bet-
ter evaluate our method, we invite twenty participants to
perform a user study, wherein five experts are professional
photographers/editors with years of experiences working
for stock photo agencies, while the others are randomly
searched amateurs of the image enhancement domain. We
select 50 raw photos from their day-to-day retouching tasks
of five categories, namely ”People”, ”Night”, ”Architec-
ture”, ”Nature”, and ”Drastic Weather”. For each category,
we randomly select 10 photos. We believe this test set is
a good representative of a real world retouching task. For
each image, we generate four retouching results from CSR-
Net, DeepLPF, DeepUPE and our method respectively. The

Pe
Me

CSRNet DeepUPE DeepLPF ours

experts 23.20% 7.60% 8.80% 60.40%
amateurs 24.13% 8.40% 22.13% 45.33%

Table 3. The percentage of preferred methods in the user study.
’Me’ and ’Pe’ present the method and percentage.

three existing methods are picked for their better perfor-
mance in the quantitative evaluation and manageable work-
load. All models are the trained models from the MIT-
Adobe FiveK dataset to test the robustness of the networks.
Each tester has been asked to choose the best in the re-
touched results of each photo by comprehensively consider-
ing their colour, brightness, contrast and artifacts (the pho-
tos and results are in the supplementary materials). We sep-
arately counted the percentage of each method in the selec-
tion results of experts and amateurs. As can be shown in
Tab. 3 that no matter the testers are experts or amateurs, our
method is preferred in the highest proportion.

5. Conclusions

In the paper, we have proposed a symmetrical deep
network, which includes an invertible feature transformer
(IFT) and two pairs of pre-trained encoder-decoder. The
symmetrical architecture allows to propagate in both direc-
tions during training, preserving the feature consistency of
the underexposed and the enhanced image pair. In addition,
our recurrent residual-attention module (RRAM) helps the
system to better achieve desired colour adjustments with
complex feature transformation. Moreover, by paying at-
tention to the interdependencies between feature channels,
the residual soft channel attention mechanism in RRAM
makes our network better restore the structure features. We
conducted lots of quantitative and qualitative comparison
experiments to prove the superiority of our method.
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