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Abstract In this paper, we present an interactive
static image composition approach, namely color
retargeting, to flexibly represent time-varying color
editing effect based on time-lapse video sequences.
Instead of performing precise image matting or
blending techniques, our approach treats the color
composition as a pixel-level resampling problem. In
order to both satisfy the user’s editing requirements and
avoid visual artifacts, we construct a globally optimized
interpolation field. This field defines from which input
video frames the output pixels should be resampled.
Our proposed resampling solution ensures that (i) the
global color transition in the output image is as smooth
as possible, (ii) the desired colors/objects specified by
the user from different video frames are well preserved,
and (iii) additional local color transition directions in
the image space assigned by the user are also satisfied.
Various examples have been shown to demonstrate that
our efficient solution enables the user to easily create
time-varying color image composition results.

Keywords Time-lapse sequence; image composition;
color retargeting; time-varying transition;
optimized interpolation field.

1 Introduction

Time-lapse video sequences capture rich visual
information in the scene, including not only temporal
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Bruxelles (ULB), Belgium. E-mail: gdauphin@ulb.ac.be,

glafruit@ulb.ac.be.

Manuscript received: 2015-11-xx; accepted: 20xx-xx-xx.

Fig. 1 Time-varying paintings by artists. Images are from

@Four Seasons Tree Nexus.

motion of objects but also time-varying color
evolution. With the wide popularization of numerous
digital cameras, currently time-lapse videos can be
easily generated by domestic consumers. Creative
applications on further exploiting and processing such
time-lapse videos attract a large number of artists and
scientific researchers.

Editing and composing the time-varying color
information into a static image, as will be shown in this
paper, is among such applications. There are various
artistic works that go in this direction. For instance,
the components of an object are taken at different time
instances and combined in the final object (see Fig. 1
the Four Seasons Tree Nexus). Another example is the
day to night transition in a scene [30]. However, such
artistic works require a very tedious interaction using
existing image and video editing tools, calling for the
complicated extraction of different color layers as well
as their seamless composition.

In this paper, we introduce an efficient time-varying
color image composition solution based on time-lapse
videos. Inspired by image retargeting works [25,
26], we name our time-varying color composition as
color retargeting. In contrast to image retargeting,
where the image is spatially resampled in a content-
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Fig. 2 Color retargeting with the proposed system. The user can easily compose and edit a time-varying color image with

several strokes on a time-lapse sequence. Our system efficiently achieves globally smooth color transition when satisfying the user’s

requirements of preserving colors/objects and local color transition directions.

dependent manner, our work is concerned with the
color resampling of the spatio-temporal pixels from
the input time-lapse video cubes. We suppose that
the color variance is continuous in the temporal
direction, and the output image can be composed
by copying (or weighted summing) pixels which are
at the same spatial position but may be originating
from different video frames. In order to match
the user’s requirements of both preserving specified
colors/objects and satisfying some desired local color
transition directions in the image space, we construct
a globally optimized interpolation field for resampling
of all pixels from the input time-lapse video. With
the proposed interpolation field, our system achieves
globally smooth color transition for all pixels, and thus
effectively avoids visual artifacts.

Our approach provides the user a novel but also
friendly composition solution for color images. With
our system the user can easily produce time-varying
editing results (see Fig. 2 for an example). We note
that achieving such results with other existing editing
tools would need much more tedious interaction. We
believe that our efficient editing framework will further
motivate more interesting applications on time-lapse
videos.

2 Related work

Our color retargeting approach draws from numerous
techniques developed for image composition, image
recoloring and time-lapse video based editing. In the
following, we focus on the contributions most related
to the above-mentioned research domains.

Image composition. The pioneering work by Perez
et al. [22] performs image composition by solving the
Poisson equation. Its numerical result aims to find

seamless filling with some selected content under given
boundary conditions. Agrawala et al. [2] propose a
well-known digital PhotoMontage framework, where
both the graph-cut optimization [6] and gradient-
domain fusion [14] are constructed to avoid visible
seams. Pritch et al. [23] also introduce a graph-cut
based shift-map optimization to minimize the gradient
discontinuities of all pixels in the output image.
In order to efficiently achieve seamless composition
between the source and the target patches, Farbman et
al. [13] propose a harmonic-like interpolation scheme
using mean-value coordinates. Darabi et al. [10]
introduce the image melding concept to further model
potential geometric and photometric transformations
when blending different images with inconsistent
color and texture properties. We note that both
the continuous and the discrete rescaling of image
resolution, such as the famous seam carving [4,
25], image retargeting [17, 26] and other related
applications [34], are well investigated. In contrast,
our color retargeting work focuses on continuous color
rescaling for image composition.

Image recoloring. To avoid precise segmentation
and propagate the desired color to different video
frames, Levin et al. [16] formulate a color intensity
optimization model for space-time neighboring pixels.
Such an approach can effectively achieve the recoloring
effect by interactive editing. Another edge-preserving
energy minimization method [18] is introduced for
locally adjusting tonal values in digital photographs.
Recoloring is also applied for editing the appearance
of materials in all-pairs propagation [3] and its
acceleration model [32]. A variety of solutions have
been proposed by further considering the feature
space of pixels, such as diffusion distance for the
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global distribution [12], locally linear embedding
(LLE) for local manifold preservation [8] and sparse
control samples for the propagation influence [33].
The literature also offers other recoloring-based
applications, such as color correction for multiview
videos [7, 31].

Time-lapse video editing. In the last decades,
researchers have also been interested in means to
further exploit and edit visual information from time-
lapse videos. The PhotoMontage approach [2] aims
to easily compose the interesting objects into a single
image, while it is unapplicable for a long-term video
with hundreds of frames. Sunkavalli et al. [28] focus
on the modeling and editing of shadow, illumination
and reflectance components under clear-sky conditions.
Another interesting application is motion-oriented
composition. Bennett et al. [5] investigate the video
rearrangement by frame-level resampling. Dynamic
narratives [9] enables the user to interactively represent
the motion in a static background. In [24], the desired
content can also be resembled by 4D min-cut based
optimization. After extracting the motion objects,
Lu et al. [20] efficiently achieve condensing and other
manipulations. From a single image, Shih et al. [27]
generate the same scene at a different time of day using
a database of time-lapse videos. Oppositely, Estrada et
al. [11] pursuit the long-exposure effect in a static image
by frame-level color resampling. Latest interesting
applications of time-lapse video editing can also be seen
on decomposing paintings into different layers [29] and
time-lapse generation from internet photos [21]. Our
proposed approach differs from such motion objects
based editing in the sense that we compose the scene
by considering the color consistency within a time-lapse
image set or a video clip.

3 Problem formulation

Formally, suppose there are N video frames in the
input time-lapse sequence, where we denote the nth
frame as In, where 0 6 n < N . The composed color
image is then represented as G. Accordingly, pixels
in the input and output images are In(~x) and G(~x),
where ~x is the pixel coordinate in the image space. In
principle, pixels in G are resampled from those being at
the same position (or co-located) in the input sequence.
That is, we need to construct a mapping function to
satisfy that

f : (I0 ∙ ∙ ∙ IN ) 7→ G. (1)

The proposed color retargeting approach is detailed in
the following section.

4 Color retargeting solution

4.1 Overview

The input to our approach is a time-lapse video
sequence, and the output is a single edited color
image that optimally represents the time variance
information guided by the user interaction. The
proposed framework is illustrated in Fig. 3. Firstly, the
original video frames are preprocessed with frame-level
color consistency correction and background panorama
based scene alignment. Secondly, in the interaction
phase, the user can 1) draw some desired areas (or
objects) of any input frame that should be preserved
in the output image, and/or 2) specify some local
time variant directions that the output color image
should follow. Next, our global optimization algorithm
automatically computes the smooth interpolation field
to satisfy the user’s expectation. Finally, according
to such globally smooth interpolation field, the output
image is generated by pixel-level resampling from the
input time-lapse video cube.

4.2 Preprocessing

In our solution, we suppose the input time-lapse
videos are captured by static cameras. To this
end, the input video could be simply aligned by
homography parameters to match a reconstructed
background panorama [20]. We note that the time-
lapse videos should follow consistency of appearance in
the temporal direction. That is, the colors of each frame
should continuously evolve in the temporal direction.
However, individual photos or frames in time-lapse
sequences easily suffer from different exposure and
lighting conditions. In order to ensure such color
consistency in frame-level evolution, each frame is
directly color corrected using histogram matching,
where the targeted histogram is obtained by cubic
interpolation under a sliding window consideration.
Note that in our work we only perform such color
correction for long-term video sequences (i.e. more
than 100 frames), in which the frame-level color
evolution is relatively slow. Alternatively, one could
employ more complicated temporal color transfer
models (e.g. [15] or our approach in [19]) to further
improve the color consistency.

4.3 Optimized interpolation field

As mentioned before, our system needs to compute a
good mapping between the input video and the output
image. For convenience, we define here an interpolation
field L, whose corresponding value at each pixel is
between 0 and N . By means of this interpolation field,
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Fig. 3 The proposed framework of our color retargeting

approach.

each each pixel in G receives a label indicating the input
frame from which it should be duplicated. Here we
consider the following three constraints to construct a
globally optimized interpolation field.

Firstly, in order to keep smooth transition for
all pixels over the output image, we force the
resampling only over neighboring pixels from the same
or neighboring input frames. More precisely, we
formulate it as a globally smooth gradient constraint,
by which the gradient is zero everywhere,

ΔL = 0, (2)

where Δ is the Laplace operator.
Secondly, for the areas covered by the user’s strokes

on specified frames, their colors in the output image
should minimize the following energy∑

~x,M(~x)=n

ωa(G(~x) − In(~x)), ∀n, 1 6 n 6 Na (3)

where M(~x) is a subset of L and represents the
objects/areas to be preserved, ωa is the weighting
factor. Na is the sum of the user’s strokes for specifying
areas or objects.

Thirdly, to satisfy local color transition directions,
which are assigned by the user, we consider that in
the output image the following equation should also be
minimized:∑

~x,N (~x)=n

ωd(G(~x) − In(~x)), ∀n, 1 6 n 6 Nd (4)

where N (~x) represents the desired frame number from
which the output color is sampled at pixel ~x. Note
that in N all pixels are on fitted splines of local color
transition directions specified by the user. N is also a
subset of L. The weighting factor ωd corresponds the
optimization energy of this constraint. Nd is the sum
of the local transition directions.

Considering the above-mentioned three constraints,
our color retargeting problem is to find the smooth
interpolation field L according to two given subsets
M and N . Moreover, this problem can easily be
reformulated as a typical linear system, its global
optimization solution is then the expected time-varying
interpolation field for the color resampling of the time-
lapse video.

Fig. 4 Globally optimized interpolation field. Sub-figure (a)

shows the areas/objects in different input frames that the user

aims to preserve. (b) shows specified local color transition

directions. (e) and (c) are the optimized interpolation field and

its visualization version. (d) and (f) are all interactive strokes

and the output image respectively.

4.4 Postprocessing

Until now, we have described our color resampling
algorithm as a one-to-one direct pixel copying between
the input video and the output image. As a result,
we found that the output image may easily suffer from
visual artifacts. This problem is mainly caused by 1)
the imperfect temporal color consistency, and 2) the
frame-level discretization errors of the temporal color
transition. Therefore, inspired by the exposure fusion
processing in [11], we generate each output pixel by
linear combination of multiple neighboring temporal
pixels, after obtaining the optimized interpolation field
L. That is, for the pixel at ~x position, if its resampling
index in the optimized interpolation field is L(~x) = n,
the corresponding output color is computed as

G(~x) =
R∑

i=−R

In+i(~x)G(n, n + i), (5)

where R is the resampling radius in the temporal
direction. G(a, b) denotes the discretization value at
position b of the normalized Gaussian function centered
over position a.

4.5 User interface

We also developed an interface to enable the user’s
quick interaction. Firstly, the user can directly draw
strokes on any frame to select some desired areas or
objects, where the content should be well preserved
in the output image. Secondly, the system supports
the user to address local color transition directions.
To achieve this function, we employ cubic spline
interpolation to fit such transition directions drawn
by the user, and record pixels on this spline as the
desired resampling values. After that, we perform
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Fig. 5 Composition result for the London sequence.

our optimization solution to finish the color image
composition. It should be noted that the user can
easily refine the optimized interpolation field by further
interaction, and thus the edited results can also be
easily refined under our optimization framework.

5 Results

5.1 Implementation details

The proposed approach was implemented in
Microsoft Visual Studio C++ 2010 on a high
performance laptop with 2.3 GHz Quad-Core Intel-
i7 CPU and 8 GB memory. The proposed system,
including the user interaction and interpolation field
optimization are performed with interactive speed, and
thus the composition result can be instantly generated.
For the parameters setting, we empirically choose ωa

and ωb as 100, which means that the target colors in
the specified areas defined by the user are given more
important priorities than the globally smooth gradients
constraint in the interpolation field. The temporal
sampling radius is set as R = 10 in our implementation.
With such parameters, the solution gives good results.
We use the Eigen et al. [1] to efficiently solve the
proposed linear system. In order to accelerate this
processing, we first obtain the low-resolution version
of the optimized interpolation field with a factor of 4
in each spatial direction, and recover it with bicubic
interpolation. It ensures the real-time interactivity in
our released implementation.

5.2 Examples

We have performed our approach on a variety of
time-lapse video sequences. For instance, In Fig. 2 we
present the color transition result changing from spring
to winter. The left two columns are composed by the
1 st, 40 th, 100 th and 200 th input frames, respectively.
To depict the time transition in one single image, we
simply draw several strokes (see the sub-figures in the
third column). In particular, we aim to preserve the
color of the sun in the 40 th frame and the green

tree in the 200 th frame, but also specify several other
local horizontal and vertical color transition directions.
Accordingly, the proposed global optimization solution
computes the smooth interpolation field (see middle
column, bottom part), and the composed image is
obtained as shown in the right sub-figure of Fig. 2.
One can observe that both the expected sun and the
green tree are well preserved, while the ground and
other areas are also smoothly changed from spring to
winter following the user’s expectation.

In Fig. 5 we show the London example. As it
can be seen from the left two columns, the lighting
is continuously varying from afternoon to night. By
several interactive strokes, the shining textures of the
tall building, captured during the day time, are well
preserved in the output image. Moreover, according to
the local color transition directions draw by the user,
the expected time variance (i.e. color transition) from
far and near also takes place smoothly. It demonstrates
that our solution can effectively avoid visual artifacts
for the color transition between the shining areas and
the dark parts in the output image.

We also show more color retargeting examples
in Fig. 6−8. In Fig. 6 and Fig. 7, we show the day to
night blending effect for the Philadelphia and Singapore
examples. With our system, the user can easily change
the color of different scene content without obvious
visual artifacts. To further investigate the effectiveness
of our resampling algorithm on extremely short video
clips, we also perform our approach with only four
input images for the Jungle example in Fig. 8. In
this case it is obvious that the bridge, the trees and
the water are clearly different among input frames.
Interestingly, various specified scene areas/objects are
elegantly blended following the desired local color
transition directions. This thus demonstrates that the
global smooth gradient constraint in our optimization
model works well to eliminate the color gaps for even
extremely short videos where the recorded colors are
obviously different.
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Fig. 6 Composition result for the Philadelphia sequence.

Fig. 7 Composition result for the Singapore sequence.

Fig. 8 Composition result for the Jungle sequence.

Finally, more results are shown in Fig. 9 for the
Jungle and Philadelphia sequences. Again, with our
color retargeting approach, the user just needs to draw
several strokes and the proposed system can easily
produce different composition results for the same
scene.

5.3 Limitations

Our color retargeting approach has several
drawbacks. Firstly, as mentioned earlier, our solution
is based on the assumption that the color evolution
in the input time-lapse videos is consistent with the
temporal change. In other words, our color resampling
approach is to represent the temporal variance by

colors chosen from the corresponding frames. Thus,
our solution cannot handle the color inconsistency
cases with respect to the time direction. Also, if
in the original video there are too many motion
objects or the background is changed too frequently,
it would be difficult for our approach to generate a
satisfying composition result. Moreover, our system
allows the user flexibility in specifying the color of
objects or local transition directions in any input
video frame. However, when the user’s strokes are
unreasonably placed or even conflicting, the proposed
algorithm may fail to perform continuous resampling.
This can introduce visual artifacts in the composed
image. In Fig. 10 for example, one can see the color
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Fig. 9 Different composition results.

distortion in the sky area (close to the lamp). In this
case, based on the user’s strokes, the resampling is
performed in frames whose indices are not consecutive.
Currently our Gaussian-weighting resampling is based
on the target frame of the interpolation field and its
neighboring temporal frames from the input video.
More complicated adjustments, such as incorporating
the neighboring resampling frames on the surface of
the optimized interpolation field, may improve the
composition effect.

6 Conclusion and future work

In this paper we propose an interactive color
retargeting approach to efficiently compose the
time-varying color transition from time-lapse videos.
We formulate the color composition as a pixel-level
resampling problem instead of performing image
matting or blending techniques. By constructing a
globally optimized interpolation field, the resampling
solution not only matches the user’s editing
requirements of preserving specified colors and
satisfying local color transitions, but also effectively
avoids visual artifacts in the composed image.
Examples demonstrate that our efficient solution
enables the user to easily edit various time-varying
color image composition results. In the future we
would like to extend our solution to motion-objects
oriented time-varying video composition and other
related applications.
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