
Structured Skip List: A Compact Data Structure for 3D Reconstruction

Shi-Jie Li1, Ming-Ming Cheng1, Yun Liu1, Shao-Ping Lu1, YaHui Wang1 Victor Adrian Prisacariu2

Abstract— The model produced by 3D reconstruction algo-
rithm is usually represented by voxels. The management of
these voxels is usually divided into two categories: ordered
and unordered methods. The ordered method holds too many
empty voxels to maintain data order which leads to a low
storage efficiency. On the contrary, the unordered method keeps
massive index data to only store nonempty voxels. In this
paper, we design a new data management method for real-time
indoor 3D reconstruction, called Structured Skip List (SSL).
The SSL can be treated as a semi-ordered method, because the
advantages of both the ordered and unordered methods are
taken into account: 1) it only holds nonempty voxels similar
to the unordered method; 2) the structured information is
introduced to reduce the storage space of index data. By
these designs, the SSL has a better performance on storage
efficiency. To handle the data collision in voxel allocation, a
hash allocation list (HAL) is proposed. The length of each Skip
List is kept balanced by fusing the IMU (Inertial Measurement
Unit) information for a high operation efficiency . The storage
efficiency analysis of different data management methods is
shown in this paper. What’s more, exhaustive investigation
is carried out on several datasets with these methods. The
experimental result demonstrates that our design can achieve
a high storage efficiency with little time loss compared to the
state-of-the-art methods.

I. INTRODUCTION

3D reconstruction [1], [2] is an attractive research topic,
and it has been widely used in various applications, such as
robot navigation, environmental perception and 3D model-
ing. To further boost these applications, efficient 3D recon-
struction is of vital importance. Fortunately, 3D reconstruc-
tion at real-time has gone through a rapid progress in last
several years, due to significant advances on both 3D sensors
and computational capacity. With the development of the
low-cost RGB-D cameras (such as Kinect), the acquirement
of 3D data is much easier than before. The computational
load is the main reason to limit the running efficiency of algo-
rithms in the past. With the progress of computing resource,
the speed of 3D reconstruction gets great improvement.

Existing 3D reconstruction algorithms can usually divide
the whole 3D space into uniform cubes, called voxels, and
the 3D data is stored in each voxel. The management of
voxels is usually based on one of the following two styles:
ordered [3] or unordered [4] methods. The ordered method
organizes the voxels in order. Hence there is no need to store
extra index data. However, this method needs to hold plenty
of empty voxels to keep this order due to the sparse distri-
bution of nonempty voxels. Therefore, the storage efficiency
of the ordered method is poor. To address this issue, the

1 College of Computer and Control Engineering, Nankai University
Tianjin, China;

2 Department of Engineering, Oxford University, UK

Fig. 1: A 3D model produced by our algorithm.

unordered data method is proposed. This method only stores
the voxels near the reconstructed surface. The management
of voxels is implemented through a well-designed hash table.
By reducing the storage of empty voxels, the unordered
method gets a better performance on storage efficiency than
the ordered method. However, the index data usually takes
up a lot of space in whole storage which is not desired.

The data distribution in the real world is usually along a
principal direction, which means the data along the principal
direction distributes more uniformly than other directions.
The horizontal direction is usually the principal direction
in most situations. Combining the advantages of above
data management methods and taking the characteristic of
data distribution into consideration, we propose a new data
structure, called Structured Skip List (SSL). Similar to the
unordered method, only those voxels near the reconstructed
surface are stored for the consideration of storage efficiency.
The voxels along the vertical direction of principal direction
are linked one by one and form as an unordered Skip List.
Along the principal direction, an ordered index is used to
manage all Skip Lists. Because the structured information is
utilized, the needed index data is reduced similar to ordered
method. What’s more, there exists less empty terms in index
data because index data distributes along principal direction.
By this design, SSL can get good performance on storage
efficiency. There are two factors existing in our algorithm
which are harmful to operation efficiency, the data collision
in voxel allocation and the unbalanced lengths of Skip Lists.
For the data collision in voxel allocation, a Hash Allocation
List (HAL) is used to solve intensive allocation collision
when new voxels are allocated. The IMU information is
introduced into our system to keep the balance of Skip List
length. Hence our system can also run in a high frame rate.

In the following sections, we first review some recent

progress on 3D reconstruction in Sec. II. Then, an overview
of the system pipeline is described in Sec. III. In Sec. IV,
the design of SSL will be discussed in details. An exhaustive
analysis of storage efficiency is shown in Sec. V. The
evaluation results of our method with other state-of-the-art
methods will be given in Sec. VI.

II. RELATED WORK

In this section, we briefly review the development of
real-time 3D reconstruction in recent years. Real-time 3D
reconstruction algorithms can be divided into two streams
according to the data structures they used. The mainstream
data structure that reconstruction algorithms usually use is
the voxel which is a small cube in 3D space [1]–[10].
Another data structure coming into use recently is surfel
which represents a small area data on the reconstructed
surface [11], [12].

The data in voxel-based reconstruction algorithms is usu-
ally represented as Truncated Signed Distance Function
(TSDF) [13], [14] which can easily fuse the measurement
from different frames. The Kinect Fusion algorithm [1], [3]
is the first successful real-time 3D reconstruction system. In
this algorithm, the whole space is divided into small voxels
and stored on the GPU memory. The storage efficiency of
Kinect Fusion algorithm is low because of the large number
of empty voxels. Hence the Kinect Fusion only aims at
small-scale 3D reconstruction task. To handle this problem,
Kintinuous [7]–[10] use the cloud slice technique to keep
the used GPU memory fixed. By this method, the Kintinuous
algorithm can reconstruct larger space. A better design, voxel
hashing [4], [5], is proposed to utilize the sparsity of data
distribution in 3D space. With this method, the storage
efficiency becomes higher.

Although the pipeline of 3D reconstruction is roughly sim-
ilar, recent research mainly focuses on more specific aspects.
DynamicFusion [15] aims to handle the reconstruction of
non-rigid scenes. GravityFusion [16], [17] fuses the informa-
tion from different sensors to boost the mapping accuracy. To
improve the reconstruction accuracy, InfiniTAM V3 [6] uses
submap strategy to adjust the relative locations of adjacent
submaps. Whelan et al. [9] used a deformation-based map to
adjust the reconstructed scenes. Other algorithms [18]–[21]
utilize the geometry information to improve the performance.
As for plane information, surfel-based reconstruction system
is more popular due to the consistency of data structure and
plane, such as ElasticFusion [11].

III. ALGORITHM PIPELINE

The pipeline of our algorithm is shown in Fig. 2, which is
similar to [5]. The main modification is the modules related
to the new data structure. The whole pipeline can be divided
into four parts: tracking, mapping, rendering and coordinate
adjustment.

A. Tracking

Similar to [8], the tracking is processed both on depth
images and color images. For the input depth image, a

Input

Tracking

Mapping

Rendering

Coordinate
Adjustment

Point-to-Plane
ICP

Frame-to-Frame
Dense track

Depth
Image

RGB
Image

3D
Model

wg wc

Voxel
Allocate

Voxel
Update

Raycasting

Far From
Center?

N
o

Yes
Center
Shift

Area Size
Adjustment

Pose

Fig. 2: The pipeline of the whole system.

point-to-plane ICP (Iterative Closest Point) algorithm [22],
[23] is applied. In other words, the point-to-plane distance
(geometry error) between points from the depth image and
the reconstructed 3D model is minimized:

min
R,t

∑
p

((Rp+ t− V(p̄))T · N (p̄))2, (1)

where p is the 3D points observed in the depth image ID. R
and t are the rotation and translation of the camera. V and
N are the maps of surface points and normals, which can
be produced by the rendering stage. p̄ is the projection of p
in the reconstructed 3D model.

To improve the tracking robustness, a color based direct
image alignment is carried out between the input color
image and the rendered color image. In this situation, the
photometric error for all pixels are minimized by

min
R,t

∑
p

||IC(π(Rp+ t)− C(p)||2, (2)

where p and C(p) represent a 3D point and its color, as
extracted in the raycasting stage. IC is the current color
image. These two error functions are minimized using Gauss-
Newton approach, and the two optimized results are linearly

Fig. 3: The procedure of coordinate adjustment. The grey
squares are occupied voxel. The black circle is the world
center.

combined to get the current camera pose:

pose = wg · poseg + wc · posec, (3)

where wg and wc are corresponding weights.

B. Mapping

The world is represented by a truncated signed distance
function (TSDF) D [13], [14], which maps each 3D point to
a distance from the nearest surface. To reduce the index num-
ber and data collision, voxels are grouped as voxel blocks,
each of which includes 8 × 8 × 8 voxels. Considering the
storage efficiency, only the voxel block near the reconstructed
surface is allocated. When a new frame is coming, the new
voxel blocks are allocated first. Then the data of all visible
voxel blocks are updated.

Voxel Allocation: When a new frame is coming, the
unallocated voxel blocks will be allocated. The detail of this
procedure will be presented in the next section.

Voxel Update: The voxel data update is the same as the
original KinectFusion algorithm [1], [3]. For each pixel in the
depth image, the voxel update is performed if the depth value
is in the valid range. The corresponding voxel is found using
the camera pose that is obtained from the tracking stage.

C. Rendering

The rendering pipeline is similar to [5]. The output of this
procedure is a point cloud map and a normal map which will
be used in the following procedure. Because the new data
structure is adopted, the processes related to data access are
modified to fit the new data structure. Similar to voxel update,
only the visible voxels are processed.

D. Coordinate Adjustment

To avoid crossing the border and improve the recon-
structed scale that same index data can hold, we design an
operation called coordinate adjustment. Benefiting from com-
plete separation of index data and voxel data, the adjustment
is performed only on index data. The coordinate adjustment
includes two parts: center shift and area adjustment.

Center Shift: The center shift keeps the reconstructed 3D
model at the center of coordinate. The new center is the
geometric center of the reconstructed 3D model. When the
new center is selected, only the index data is adjusted and
the voxel data remains unchanged.

Area Adjustment: The area adjustment will change the
length-width ratio of x-y coordinates to make the coordinates
fit the reconstructed 3D model better. Similar to center shift,
only the index is adjusted.

By these dynamic adjustments, the same storage can
accommodate more data than fixed coordinate and avoid
crossing the border of coordinate. Fig. 3 shows this pro-
cedure.

IV. DATA STRUCTURE DESIGN

In this section, we will give an exhaustive description
of our new data structure: Structure Skip List (SSL). A
diagram of SSL is shown in Fig. 4. As we all know, the
data usually distributes along the principal direction. For the
clear description, we define the world coordinate system in
the following section as follow: the ground is represented by
the x-y plane and the z axis is upward. To fit the character
of data distribution, we design the SSL as a semi-order data
structure: the index data along x-y coordinates is ordered
whereas the voxel data along z axis is unordered.

A. Data Organization

The SSL consists of two lists: an ordered index list and
an unordered data list. The voxel blocks with the same x-
y values are called Skip List and stored in unordered data
list. Each voxel block in Skip List is linked by a offset.
The ordered index list manages all Skip Lists. The entries
in index list store the pointers that point to the start node of
the corresponding Skip List. The relevant data structures are
list in the following:

// ordered index l i s t
i n t ptr[INDEX NUM];

// unordered data l i s t
s t r u c t Voxel
{

f l o a t SDF value;
uchar fusion num;

};

s t r u c t VoxelBlock
{

Voxel v o x e l s[512];
Vector3s pos;
s h o r t o f f s e t ;

};

VoxelBlock *VBA;

// HAL
Vector3s a l l o c a t e P o s[ALLOCATE NUM];

B. Retrieval

The search for specified voxel is carried out as follows:
1) Find the corresponding entry in ordered index list using

x-y values.

Hash function

HAL

Allocated Voxel Blocks
To be

allocated
Voxel Blocks

Unallocated Voxel BlocksOrdered index list (ptr)

Unordered data list (VBA)
O x

y

Fig. 4: The overviews of SSL and HAL. The new allocated voxel blocks are represented by dark grey cubes. The positions
of allocated voxel blocks are inserted into HAL first. The inserted positions in VBA are found using ordered index list.

2) Get the start position of corresponding Skip List using
above results.

3) Traverse the Skip List to get the position of corre-
sponding voxel block.

4) Search in the voxel block to obtain the target voxel.
If any of the above procedures fails, the voxel is not allocated
up to now.

C. Allocation

When a new frame is coming, the unallocated voxel blocks
will be allocated first. Because the check for allocation
position is parallel, the allocation procedure is with heavy
data collision. We use Hash Allocation List (HAL) to handle
this problem. When the voxel block containing checked point
does not exist in VBA, the position of voxel block will be
inserted into HAL. All checked voxel blocks with same po-
sition will be mapped to the same entry in HAL using a hash
function. As we know, in a Simultaneous Localization And
Mapping (SLAM) system, the contents of the continuous
frames are similar. Hence the voxel in the current frame can
be usually observed in the following frames. The voxel block
position mapping to an occupied entry HAL will not be taken
into consideration in the allocation of current frame and will
be allocated in the following frames. In addition, in each
allocation procedure, only one voxel block is allocated for
each Skip List to simplify the allocation procedure. The rest
of other voxel blocks will also be allocated in the following
frames. The burden of voxel allocation for different frames
is usually different. By this design, the heavy burden is
distributes among the continuous frame which is beneficial
to system efficiency.

The inserted position (x, y, z) is mapped to HAL by a
hash function:

h = ((x ∗P1)
⊕

(y ∗P2)) mod ALLOCATE NUM (4)

where P1 and P2 are 653 and 541, respectively. With our
design, the HAL is efficient with a limited length. The voxel
allocation procedure is shown in Fig. 4.

θ

Fig. 5: The length of Skip List is varying with principal
direction changing. The black circles represent the positions
of voxel blocks. We can see that the length of vertical Skip
List reduces from six to three due to the rotation of principal
direction.

D. IMU Information Fusion

Because the time consumption for parallel algorithm is
determined by the maximum time of one thread in all parallel
threads. It is harmful for operation efficiency when the
lengths of Skip Lists are unbalanced. As we can see, the data
usually distributes along principal direction. To keep balance
among the lengths of Skip Lists, the IMU information is
utilized to determine the principal direction. By the aid of
IMU, the world coordinate system is set as follows: the
ground is on x-y plane and the z axis is opposite to gravity
direction. Although this setting is fine for most situations,
in some situations this problem is still not been solved.
For example, some vertical structures should be taken into
account such as the walls. In Fig. 5, when the z axis rotates
a little angle we can see that the length of SKip List is
reduced. Thus the IMU information can be used to reduce
the influence of unbalance length.

V. STORAGE EFFICIENCY ANALYSIS

In this section, we give a detailed analysis of three data
management methods: ordered method, unordered method,

(a) (b)

O x

y

(c)

Fig. 6: Diagrammatic sketch of three methods: (a) ordered, (b) unordered, (c) semi-ordered. The dark cubes represent the
voxels with meaningful data, whereas the light grey ones represent empty voxels.

and semi-ordered method. In these methods, the data is
divided into two parts, index data and voxel data. We define
the notations in the following analysis as follows:

• NI : The item number in index data.
• SI : The storage of index item.
• NV : Total voxel number.
• NNV : The number of nonempty voxel.
• SV : The storage of a voxel.

In the algorithm design, the storage efficiency E can be
formulated as

E =
NNV SV

NISI +NV SV
, (5)

in which E is expected to be high enough. In the following,
we assume the voxel number NV is fixed in each method.

A. Ordered Method

There is no index data existing in the ordered method,
which means NISI = 0. At the expense of this, all voxels
in space must be hold to keep the data in order no matter
whether there is data in them or not. Only by this way,
the voxels can be accessed. As mentioned above, the data
distribution in real world is extremely sparse which leads
to low utilization rate of voxels. In other words, the NNV

is far less than NV , i.e. NNV << NV . Hence the storage
efficiency is in a low level. Thus the data in ordered method
can be treated as a dense 3D matrix with many zero in it (as
shown in Fig. 6 (a)). The final storage efficiency is

Eordered =
NNV

NV
≈ 0 (6)

B. Unordered Method

Different from ordered method, unordered method only
stores the voxels near the reconstructed surface. Almost all
stored voxels are nonempty, which means NNV ≈ NV .
To manage unordered voxel data, index data (hash table) is
introduced. In most situations, the number of index terms is
greater than voxel terms due to some management operation
such as swap operation [4]. Hence the NI is greater than
NV , i.e. NI >> NV . What’s worse, some voxel data (voxel
position) is stored in index data, and it will occupy a lot
of memory due to different lengths of index data and voxel

data. Due to the sparsity of the data distribution, unordered
method has a better performance on storage efficiency than
ordered method. However, it is still possible to compress the
cost space further. From above discussion, we can see that
the unordered method is similar to a sparse 3D matrix. The
voxel data is the element in this matrix and the hash table
is used for data access (as shown in Fig. 6 (b)).

C. Semi-ordered Method

Similar to unordered method, only the voxels near the re-
constructed surface are hold for the consideration of storage
efficiency (NNV ≈ NV). The data in each index term is
minimized (a pointer) and all voxel-related data is stored
in voxel (SI < SV). Because the data distribution along
the principal direction is usually uniform, almost all indexes
hold the valid data. We have NI < NV because one index
term may point to several voxels. In a word, the index
data is organized in order, and is similar to a 2D dense
matrix. The voxel data is separated in each index term in
an unordered method which is similar to a link list. Because
of the combination of the ordered method and unordered
method, this method is treated as semi-ordered method. The
mechanism of semi-ordered method is shown in Fig. 6 (c).

TABLE I: The experimental results on TUM RGB-D dataset
(storage efficiency (%) and average runtime (ms) per frame).

sequence SSL hash hhash ordered
fr1 desk 99.988 96.124 93.19 0.043

fr3 cabinet 99.982 99.516 99.47 0.036
fr3 str notex far 99.986 99.727 99.694 0.043

fr3 str notex near 99.982 99.031 99.553 0.011
fr3 str tex far 99.988 99.375 99.704 0.021

fr3 str tex near 99.983 92.963 98.99 0.173
average time (ms) 4.99 3.33 4.77 14.81

VI. EXPERIMENTAL EVALUATION
In this section, we evaluate various competitors on two

datasets: TUM RGB-D dataset [24] and ScanNet dataset
[25]. All algorithms in this section are evaluated on the same
platform with Intel i7-4790K (4GHz) CPU and NVIDIA
GTX 1080 GPU. We choose a state-of-the-art 3D reconstruc-
tion system, InfiniTAM [5], [6], [26], [27], as the baseline

Fig. 7: Reconstruction results on some TUM RGB-D Dataset sequences.

Fig. 8: Reconstruction results on some Scannet Dataset sequences.

TABLE II: The experimental results on ScanNet dataset
(storage efficiency (%) and average runtime (ms) per frame).

sequence SSL hash hhash ordered
0013 00 99.981 99.052 98.045 0.003
0032 00 99.986 98.848 93.857 -
0036 00 99.981 98.55 96.218 -
0047 00 99.988 97.514 93.484 0.005
0049 00 99.985 98.299 98.291 -

average time (ms) 3.92 3.4 2.83 11.75

method. Apart from the highly efficient implementation, it
also includes several mainstream data structure used for 3D
reconstruction, such as voxel hashing (hash) [5], a variant of
voxel hashing called hierarchical hashing (hhash) [26], and
the traditional ordered method (ordered). In our experiments,
the reconstructed size of ordered is set as 512 × 512 × 512
voxels. For a fair comparison, SSL is also implemented based
on this system. Thus the different results are mainly caused
by different data management methods.

A. TUM RGB-D Dataset [24]

The TUM RGB-D dataset contains several sequences
acquired from a Kinect in different scenes. Each sequence
contains RGB images, depth images, and accelerator data.
Some reconstructed models of SSL are shown in Fig. 7.

The numeric results are shown in TABLE. I. Among all
methods, our proposed SSL gets the best performance on
storage efficiency. What’s more, the index data is kept in a
small percentage on all sequence (less than 0.02%). As for
other methods, the storage efficiency varies with different
sequences, which means our SSL is more robust than these
methods on storage efficiency. In the experiments, we run
each sequence for three times and the average running time
is used as the final speed. The average runtime per frame
for different methods is also shown in TABLE. I. We can
see that the hash achieves the best performance among all
competitors. Our method (SSL) has the similar performance

angle
0 20 40 60 80 100 120 140 160 180

tim
e

5

5.5

6

6.5

7

7.5

8

8.5

Fig. 9: The influence of principal direction setting for the
running time. The interval of two adjacent principal direc-
tions is 5◦. This experiment is performed on the sequence
fr1 desk of TUM RGB-D dataset.

with hhash which is far enough for real-time applications.
In addition, the ordered method is much slower than our
method.

We test the influence of principal direction on sequence
fr1 desk. The results are shown in Fig. 9. As we can see, the
average runtime per frame varies with the principal direction
obviously. Hence the setting of principal direction is of vital
importance for algorithm efficiency.

B. ScanNet Dataset [25]

The ScanNet dataset consists of many sequences acquired
from different indoor scenes. For each sequence, the same
data is provided as in TUM RGB-D dataset. Some re-
constructed models are shown in Fig. 8. We can come to
the similar conclusion from TABLE. II. Specifically, SSL
achieves the best storage efficiency on all sequences, and it
is more robust than other competitors with only a little more

Fig. 10: The data collision in voxel allocation at the first
frame in scene0013 00. The number of allocated voxel is
590. However, the number of check times for these voxels
are 441187.

time consumption. The speed is already enough for real-time
application. It is worth noting that the ordered fails on some
sequences due to its limited reconstruction scales.

We test the data collision in voxel allocation on
scene0013 00. This test is performed at the first frame of
scene0013 00. We show the results in Fig. 10. From the
figure, we can see that the check number for each block
position is extremely high. If all checked voxel blocks are
allocated, it is a huge burden for the system. What’s worse,
the VBA will be exhausted in a minute. This validates the
necessity of HAL.

ACKNOWLEDGMENTS

This research was supported by NSFC (NO. 61620106008,
61572264), the national youth talent support program, Tian-
jin Natural Science Foundation for Distinguished Young
Scholars (NO. 17JCJQJC43700), Huawei Innovation Re-
search Program.

REFERENCES

[1] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli,
J. Shotton, S. Hodges, D. Freeman, A. Davison, et al., “KinectFusion:
real-time 3D reconstruction and interaction using a moving depth cam-
era,” in ACM Symposium on User Interface Software and Technology.
ACM, 2011, pp. 559–568.

[2] A. Dai, M. Nießner, M. Zollhöfer, S. Izadi, and C. Theobalt, “Bundle-
Fusion: Real-time globally consistent 3D reconstruction using on-
the-fly surface reintegration,” ACM Transactions on Graphics (TOG),
vol. 36, no. 3, p. 24, 2017.

[3] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim,
A. J. Davison, P. Kohi, J. Shotton, S. Hodges, and A. Fitzgibbon,
“KinectFusion: Real-time dense surface mapping and tracking,” in
IEEE International Symposium on Mixed and Augmented Reality
(ISMAR). IEEE, 2011, pp. 127–136.

[4] M. Nießner, M. Zollhöfer, S. Izadi, and M. Stamminger, “Real-time
3D reconstruction at scale using voxel hashing,” ACM Transactions
on Graphics (TOG), vol. 32, no. 6, p. 169, 2013.

[5] O. Kähler, V. A. Prisacariu, C. Y. Ren, X. Sun, P. Torr, and D. Murray,
“Very high frame rate volumetric integration of depth images on
mobile devices,” IEEE Transactions on Visualization and Computer
Graphics (TVCG), vol. 21, no. 11, pp. 1241–1250, 2015.

[6] O. Kähler, V. A. Prisacariu, and D. W. Murray, “Real-time large-scale
dense 3D reconstruction with loop closure,” in European Conference
on Computer Vision (ECCV). Springer, 2016, pp. 500–516.

[7] T. Whelan, M. Kaess, M. Fallon, H. Johannsson, J. Leonard, and
J. McDonald, “Kintinuous: Spatially extended kinectfusion,” 2012.

[8] T. Whelan, H. Johannsson, M. Kaess, J. J. Leonard, and J. McDonald,
“Robust real-time visual odometry for dense RGB-D mapping,” in
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2013, pp. 5724–5731.

[9] T. Whelan, M. Kaess, J. J. Leonard, and J. McDonald, “Deformation-
based loop closure for large scale dense RGB-D SLAM,” in IEEE\RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2013, pp. 548–555.

[10] T. Whelan, M. Kaess, H. Johannsson, M. Fallon, J. J. Leonard,
and J. McDonald, “Real-time large-scale dense RGB-D SLAM with
volumetric fusion,” The International Journal of Robotics Research,
vol. 34, no. 4-5, pp. 598–626, 2015.

[11] T. Whelan, S. Leutenegger, R. Salas-Moreno, B. Glocker, and A. Davi-
son, “ElasticFusion: Dense SLAM without a pose graph.” Robotics:
Science and Systems, 2015.

[12] T. Whelan, R. F. Salas-Moreno, B. Glocker, A. J. Davison, and
S. Leutenegger, “ElasticFusion: Real-time dense SLAM and light
source estimation,” The International Journal of Robotics Research,
vol. 35, no. 14, pp. 1697–1716, 2016.

[13] B. Curless and M. Levoy, “A volumetric method for building complex
models from range images,” in ACM SIGGRAPH Annual Conference
(SIGGRAPH). ACM, 1996, pp. 303–312.

[14] A. Hilton, A. J. Stoddart, J. Illingworth, and T. Windeatt, “Reliable
surface reconstruction from multiple range images,” in European
Conference on Computer Vision (ECCV). Springer, 1996, pp. 117–
126.

[15] R. A. Newcombe, D. Fox, and S. M. Seitz, “DynamicFusion: Re-
construction and tracking of non-rigid scenes in real-time,” in IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
2015, pp. 343–352.

[16] P. Puri, D. Jia, and M. Kaess, “GravityFusion: Real-time dense
mapping without pose graph using deformation and orientation.”

[17] T. Laidlow, M. Bloesch, W. Li, and S. Leutenegger, “Dense RGB-D-
Inertial SLAM with map deformations,” in IEEE\RSJ International
Conference on Intelligent Robots and Systems (IROS), 2017, pp. 6741–
6748.

[18] T. Whelan, L. Ma, E. Bondarev, J. McDonald, et al., “Incremental and
batch planar simplification of dense point cloud maps,” Robotics and
Autonomous Systems, vol. 69, pp. 3–14, 2015.

[19] L. Ma, C. Kerl, J. Stückler, and D. Cremers, “CPA-SLAM: Consistent
plane-model alignment for direct RGB-D SLAM,” in IEEE Interna-
tional Conference on Robotics and Automation (ICRA). IEEE, 2016,
pp. 1285–1291.

[20] P. F. Proença and Y. Gao, “Probabilistic RGB-D odometry based
on points, lines and planes under depth uncertainty,” arXiv preprint
arXiv:1706.04034, 2017.

[21] J. Wang, J. Song, L. Zhao, and S. Huang, “A submap joining based
RGB-D SLAM algorithm using planes as features,” in Field and
Service Robotics. Springer, 2018, pp. 367–382.

[22] P. J. Besl and N. D. McKay, “Method for registration of 3-D shapes,” in
Sensor Fusion IV: Control Paradigms and Data Structures, vol. 1611.
International Society for Optics and Photonics, 1992, pp. 586–607.

[23] S. Rusinkiewicz and M. Levoy, “Efficient variants of the ICP algo-
rithm,” in 3-D Digital Imaging and Modeling, 2001. Proceedings.
Third International Conference on. IEEE, 2001, pp. 145–152.

[24] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers,
“A benchmark for the evaluation of RGB-D SLAM systems,” in
IEEE\RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2012, pp. 573–580.

[25] A. Dai, A. X. Chang, M. Savva, M. Halber, T. Funkhouser, and
M. Nießner, “Scannet: Richly-annotated 3D reconstructions of indoor
scenes,” in IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), vol. 1, 2017.

[26] O. Kähler, V. Prisacariu, J. Valentin, and D. Murray, “Hierarchical
voxel block hashing for efficient integration of depth images,” IEEE
Robotics and Automation Letters, vol. 1, no. 1, pp. 192–197, 2016.

[27] V. A. Prisacariu, O. Kähler, S. Golodetz, M. Sapienza, T. Caval-
lari, P. H. Torr, and D. W. Murray, “InfiniTAM v3: A framework
for large-scale 3D reconstruction with loop closure,” arXiv preprint
arXiv:1708.00783, 2017.

