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Abstract— Video stabilization techniques are essential for most
hand-held captured videos due to high-frequency shakes. Several
2D-, 2.5D-, and 3D-based stabilization techniques have been pre-
sented previously, but to the best of our knowledge, no solutions
based on deep neural networks had been proposed to date. The
main reason for this omission is shortage in training data as well
as the challenge of modeling the problem using neural networks.
In this paper, we present a video stabilization technique using
a convolutional neural network. Previous works usually propose
an off-line algorithm that smoothes a holistic camera path based
on feature matching. Instead, we focus on low-latency, real-time
camera path smoothing that does not explicitly represent the
camera path and does not use future frames. Our neural network
model, called StabNet, learns a set of mesh-grid transformations
progressively for each input frame from the previous set of
stabilized camera frames and creates stable corresponding latent
camera paths implicitly. To train the network, we collect a dataset
of synchronized steady and unsteady video pairs via a specially
designed hand-held hardware. Experimental results show that
our proposed online method performs comparatively to the tra-
ditional off-line video stabilization methods without using future
frames while running about 10 times faster. More importantly,
our proposed StabNet is able to handle low-quality videos, such as
night-scene videos, watermarked videos, blurry videos, and noisy
videos, where the existing methods fail in feature extraction or
matching.
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Fig. 1. Deep online video stabilization. We propose StabNet, a neural network
that learns to predict transformations for each incoming unsteady frame, given
the history of steady frames. Applying the predicted transformations to the
original unsteady frame generates the stabilized output frame. The stabilized
frames then act as historical frames for stabilizing the following unsteady
frames.

I. INTRODUCTION

V IDEOS captured by hand-held camera are often not
easy to watch due to shaky content. Several digital

video stabilization techniques have been proposed in the
past decade to improve the visual quality of hand-held
videos, by removing high-frequency camera movements
[1]–[5]. The majority of the proposed methods deal with this
problem using a global view, by first estimating and then
smoothing the camera path using offline computation. The
very few online stabilization methods follow a ‘capture→
compute→display’ procedure for each incoming video frame
in real time with low latency. Due to the real-time requirement
in such methods, the camera motion is estimated by an Affine
transformation, homography or using meshflow. In this paper,
we focus on the online stabilization problem. Different
from existing approaches, that must explicitly model the
camera path to smooth it, we use a learning-based approach
to directly compute a target steady transformation, with
guidance from historical stabilized frames (see Figure 1).

In recent years, we have witnessed how convolutional neural
networks (CNNs) changed Computer Vision and Computer
Graphics fields. Methods that are based on CNNs perform
more accurately and more efficiently. For example, several
traditional video processing topics such as video stylization [6]
and video deblurring [7] are re-addressed using CNNs. To our
knowledge, there are no CNN-based methods published for
digital video stabilization, although it is an important topic
in video processing. We observed two main obstacles that
prevent a CNN-based stabilization solution. First, the lack of
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training data: pairs of steady and unsteady synchronized videos
with an identical capturing route and content are required for
training a CNN model. While this is not necessary for tradi-
tional methods, it is essential for a learning-based stabilization
approach. Second, the challenge of correct problem definition:
traditional stabilization methods compute and smooth a camera
path, which cannot be easily adapted to a CNN-based solution.
A somewhat different problem definition is required.

Based on these observations, we propose to solve the cor-
responding issues by creating a practical data set for training
a neural network, and modifying the formulation of the prob-
lem by defining a progressive online stabilization algorithm.
First, to collect training data, we captured synchronized hand-
held steady/unsteady video pairs using a special hardware.
We remodeled a hand-held stabilizer with two cameras, where
only one camera is stabilized by the stabilizer while the other
camera is fixed to the stabilizer grip, moving consistently with
the hand motions. Second, in our modified formulation of the
stabilization problem, instead of estimating and smoothing a
virtual camera path, we learn transformations for spatially
distributed regular mesh grids from each unsteady frame
progressively along the time-line, and generate a steady output
video in an online fashion.

We present StabNet, a CNN model to stabilize frames with
light-weighted feed-forward operations through the network.
The learning process is driven by the information of his-
torically stabilized frames with the supervised ground-truth
steady frame. Figure 1 shows the overview of our deep video
stabilization. The proposed deep stabilization method performs
comparably well on test videos collected from existing works.
The main merit of our algorithm is the ability to run in
real-time at 35.5 FPS with minumum latency (1 frame) on
a NVIDIA GTX 1080Ti graphic card, being about 10×
faster than offline methods. More importantly, our method
is superior to existing methods with the ability to handle
low-quality videos, such as night-scene videos, watermarked
videos, blurry videos and noisy videos, where existing feature-
matching based methods may totally fail. To our knowledge,
the proposed StabNet is a pioneer in using convolutional
network for digital video stabilization.

We also built the DeepStab dataset consisting of pairs of
synchronized steady/unsteady videos. We have released the
dataset and believe that it will benefit the community for future
research on stabilization using data-driven methods.

II. RELATED WORK

Our work is closely related to digital video stabilization
approaches and deep learning video manipulation.

A. Digital Video Stabilization

Existing offline stabilization techniques estimate the camera
trajectory from 2D, 2.5D or 3D perspective and then synthesize
a new smooth camera trajectory to remove the undesirable
high-frequency motion. 2D video stabilization methods esti-
mate (bundled) homography or affine transformations between
consecutive frames and smooth these transformations tempo-
rally. In pioneer works, low-pass filters were applied to smooth

parameters of models [1], [8]. An L1-norm optimization-
based method was proposed by Grundman et al. [3] with a
path synthesis consisting of simple cinematography motions.
Later, a bundled camera path based model was proposed by
Liu et al. [5], estimating and smoothing multiple local camera
paths. Zhang et al. [9] proposed to optimize geodesics on the
Lie group embedded in transformation space to stabilize video.
Liang et al. [10] analyzed the rolling shutter effect via global
motion estimation and velocity estimation, and corrected the
distortion via local motion refinement and scanline realign-
ment. 3D-based video stabilization approaches reconstruct the
3D scene [11] from video, then estimate and smooth the 3D
camera trajectory. Content-preserve warping [2] was proposed
as the first 3D stabilization method. Later, subspace video
stabilization [4] was proposed with long tracked features
smoothed using subspace constraints. Goldstein and Fattal [12]
proposed to enhance the length of feature tracks with epipolar
transfer. Generally speaking, 2D stabilization methods perform
efficiently and robustly, and 3D-based methods are able to
generate visually better results.

Real-time online stabilization is specifically desired for live
stream applications. Solutions combining the gyroscope hard-
ware and image contents were applied on mobile phones [13].
Liu et al. [14] proposed an online stabilization method which
only use historical camera path to compute warping functions
for incoming frames. Inspired by their idea, we present a deep
online stabilization approach which performs stabilization
given a few historical stabilized frames. The novelty of our
approach is that we avoid explicitly estimating and smoothing
camera path, instead, we use a CNN model to directly predict
warping functions.

B. CNNs for Video Applications

In recent years, CNNs have made huge improvements in
computer vision tasks such as image recognition [15], [16]
and generation [17], [18]. When feeding multiple successive
frames from videos, CNNs can predict optical flow [19],
camera motion [20], or semantics [21]. There are several works
which use CNNs to directly produce video contents, such as
scene dynamic generation [22], frame interpolation [23] and
deblurring [7], [24]. Because predicting a long video sequence
is still a challenging problem, all of the above works used only
two or very few successive frames as training samples. The
proposed StabNet also considers a temporal neighborhood at
each time. The stabilization problem cannot be solved using
a generation-based model because of the severe vibration of
the input video content. To generate visually pleasing result,
our StabNet learns the warping transformations instead of
generating pixel values.

III. TRAINING DATASET

Generating training data is one of the key challenges for
digital video stabilization, where ground truth data cannot be
easily collected/labeled. To train StabNet, two synchronized
video sequences of the same scene are required: one sequence
captures a steady camera movement, while the other is unsta-
ble. One possible way to generate such data is to render a
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Fig. 2. Exemplar frames of DeepStab dataset. The dataset includes pairs of synchronously captured videos. Each pair consists of an unsteady video and
a stabilized video, with the same content. Camera motions include forward movement, pan movement, spin movement and complex movements including
combinations of the above, at various speed.

Fig. 3. Hardware and training data capturing process.

virtual scene with two camera path configurations: smooth
and jumpy. However, CNN models trained using rendered
virtual scene may not generalize well due to the domain
gap between training synthetic video and testing real videos
captured by hand-held camera. To generate authentic data,
we designed a specialized hardware with two portable GoPro
Hero 4 Black cameras and a hand-held stabilizer,1 where
the cameras lay horizontally next to each other with small
disparity (Figure 3). When capturing videos, the two cameras
shoot synchronously, with only one camera stabilized, while
the other moves consistently with the hand/body motion of
the holder. We turned off the auto-focus and auto-exposure
functions of the cameras and used the synchronous remote
control for synchronization.

Training videos are obtained by holding the designed hard-
ware while taking videos in a first-person point of view.
We present the DeepStab dataset, containing pairs of syn-
chronized videos with diverse camera movements. The dataset
includes indoor scenes with large parallax, and common
outdoor scenes with buildings, vegetation, crowd, etc. Cam-
era motions include forward movement, pan movement, spin

1https://www.youtube.com/watch?v=8vu7IDuDD64

movement and complex movements including combinations of
the above, at various speed. We remove the fish-eye distortion
of the videos in post-processing. We trim parts with large light-
ing difference between the cameras pair, and videos with non-
overlapping field of views of the cameras by aligning the frame
content and cropping a new rectangular view for each camera.

In total, we collected 60 pairs of synchronized videos whose
length is within 30 seconds, at 30 FPS. The videos are
split into 44 training pairs, 8 validation pairs and 8 testing
pairs. Figure 2 shows representative sampled frames from the
dataset. The recorded video pairs are augmented to provide
more training samples by horizontally flipping the frames,
reversing the video sequences and combining both flipping
and reversing.

IV. THE STABNET

Overview: We propose to stabilize the video without using
future frames, relying on how the hand-held stabilizer works
during capturing paired steady and unsteady videos. We con-
vert the online stabilization problem to a supervised learn-
ing problem of conditional transformation regression without
explicitly computing a camera path. Our goal is to learn to
warp the input video from an unstable camera to a virtually
stable camera horizontally next to the unstable camera with a
small parallax, as in the training data.

The inputs to StabNet are an incoming unsteady frame
It and six conditional historical steady frames sampled
from approximately one second St = � İt−32, İt−16, İt−8,
İt−4, İt−2, İt−1� for time-stamp t . The sampling of historical
frames are denser near the incoming frame and sparser far
from the incoming frame. Inspired by [5] which uses a
bundled camera model for stabilization, we propose to regress
a transformation f i, j

t for the (i, j)-th regularly divided mesh-
grid gi, j

t , where a 4 × 4 mesh Gt = {gi, j
t |1 ≤ i, j ≤ 4} are

spatially distributed on frame It . The output of our model is
consequentially a set of transformations Ft = { f i, j

t |1 ≤ i, j ≤
4} for frame It . The steady frame is then created by applying
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Fig. 4. Network Architecture. StabNet is a two-branch Siamese network with shared parameters in each branch. It consists of an Encoder and a Multi-Grid
Regressor. The Encoder is an adapted ResNet-50 backbone model, which encodes input concatenated frames into a 1×1×2048 feature vector. The Multi-Grid
Regressor consists of a sequence of FC layers where the last fc reg layer regresses grid vertex positions with dimension (h + 1) × (w + 1) × 2, and h, w are
grid numbers along x-axis and y-axis respectively. During training, samples �It , st � and �It−1, st−1� of two successive incoming frames with corresponding
historical frames fed to the network. The transformations Ft and Ft−1 are then predicted. The network is trained with stability loss, shape-preserving loss
and temporal loss.

̂It = Ft ∗ It , where ∗ is the warping operator. We use the
desired vertices {(x̂ i

t , ŷ j
t ), (x̂ i+1

t , ŷ j
t ), (x̂ i , ŷ j+1

t ), (x̂ i+1, ŷ j+1)}
of the deformed mesh grid ĝi, j

t to represent each transfor-
mation f i, j

t . Our network can regress the mesh grid vertex
transformation representation, and can drive the warping of
image content located inside the grid. The learning process
is supervised by our ground-truth steady frames I �

t . When
training StabNet, the conditional inputs St are the ground-
truth steady frames �I �

t−32, I �
t−16, I �

t−8, I �
t−4, I �

t−2, I �
t−1�, while

when testing, St are the historical stabilized frames
�̂It−32, ̂It−16, ̂It−8, ̂It−4, ̂It−2,̂It−1�.
A. Network Architecture

Our StabNet is a Siamese network [25] that has two
branches sharing the network parameters. We use a Siamese
architecture to preserve temporal consistency of successive
transformed frames ̂It−1 = Ft−1 ∗ It−1 and ̂It = Ft ∗ It .
Each branch of StabNet is a two-stage network consisting
of a backbone encoder, that extracts high-level features from
the inputs and a multi-grid transformation regressor, that
predicts the stabilization transformations from the extracted
feature map. Figure 4 shows the architecture of StabNet. The
inputs are seven concatenated grayscale frames, each with
dimension W × H × 1, consisting of six conditional steady
frames St and one unsteady frame It . Frames are sent to an
encoder to extract features. This encoder adapts ResNet-50
[16] as the backbone feature extractor, using the conv 1 as
the input channel, modified to meet our inputs, and removing
all layers after average pooling. The extracted feature map
from the encoder is of dimension 1 × 1 × 2048. Next, we use
a sequence of FC layers with output feature dimensions
�2048, 1024, 512, (h + 1) × (w + 1) × 2�, where w = 4 and
h = 4 are grid sizes along x-axis and y-axis respectively.
The output dimension corresponds to the total number of grid
vertex points.

B. Stabilization Loss Functions

StabNet training process is driven by three types of loss
functions: stability loss, shape-preserving loss and temporal

smoothness loss. The comprehensive loss function is based on
neighboring input frames It and It−1, and is defined as:

L =
∑

i∈{t,t−1}
Lstab(Fi , Ii ) + Lshape(Fi , Gi )

+L temp(Ft , Ft−1, It , It−1), (1)

where Lstab is the stability loss, Lshape is the shape-preserving
loss and L temp is the temporal loss.

1) Stability Loss: The stability loss drives the warped
unsteady frames to the ground-truth steady frames using cues
of pixel alignment and feature point alignment. It is defined as:

Lstab(Ft , It ) = α1 Lpixel(Ft , It ) + α2 Lfeature(Ft , It ), (2)

where Lpixel is the pixel alignment term, Lfeature is the feature
alignment term, and α1 = 50.0, α2 = 1.0 are constant weights.

The pixel alignment term Lpixel measures how the trans-
formed frame ̂It = Ft ∗ It aligns with the ground-truth steady
frame I �

t , using mean squared error (MSE):

Lpixel(Ft , It ) = 1

D
||I �

t − Ft ∗ It ||22, (3)

where D is the spatial dimension of frame. The transformation
Ft ∗ It operates in the image domain. To make the warping
function differentiable, we used spatial transformer layer [26].
Lpixel loss will be small if the transformed frame ̂It aligns well
with the ground-truth frame I �

t . However, during training ̂It can
not converge well to I �

t . During early training stages, unsteady
and steady frames are not aligned and the loss term is less
correlated. For better convergence during training, we further
introduce a feature alignment loss.

The feature alignment term Lfeature is computed as the
average alignment error of matched feature points after
transforming the unsteady frame It using the predicted
transformation Ft :

Lfeature(Ft , It ) = 1

m

m
∑

i=1

||p�i
t − Ft ∗ pi

t ||22. (4)

where Pt = {�pi
t , p�i

t � | i ∈ {1, · · · , m}} are the m pairs of
matched feature points between each steady/unsteady frame
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Fig. 5. Shape-preserving loss terms. (a) illustrates the intra-grid distortion
term associating three triangular grid vertices. (b) shows the inter-grid
consistency term on three consecutive mesh vertices along an edge.

pair, and pi
t and p�i

t are the i -th matched feature points
from unsteady frame It and ground-truth steady frame I �

t
respectively.

To compute the feature loss, all pairs Pt are computed in
a pre-processing stage between steady and unsteady frame
pairs. We extract SURF features [27] from both It and I �

t , then
calculate the matching between them by dividing the frames
into 2 × 2 sub-images, and using a RANSAC algorithm [28]
to fit a Homography in each corresponding sub-image.
We match features in 2 × 2 sub-images instead of 4 × 4 as
in [5], because of the large camera pose and content variation
between the steady and unsteady cameras. Please note that
the feature extraction and feature matching processes are only
performed for training the network and not needed during
online stabilization.

2) Shape-Preserving Loss: Because our model regresses
mesh vertex positions of the stabilized video, it is important
to preserve the shapes of grids to avoid distortion artifact and
to encourage neighboring grids to transform consistently. Our
shape-preserving loss thus consists of an intra-grid distortion
term L intra and an inter-grid consistency term L inter.

Inspired by [2], we introduce an intra-grid loss L intra
to encourage the triangle of neighboring deformed vertices
{v̂t , v̂

0
t , v̂1

t } ⊂ ft ∗ gt to follow a similarity transformation:

L intra(Ft , Gt ) = 1

N

∑

v̂t

||v̂t − v̂1
t − s R
v01

t ||22, R =
[

0 1
−1 0

]

,

(5)

where 
v01
t = v̂0

t − v̂1
t , v̂0

t and v̂1
t are neighboring vertices and

s = ||vt − v1
t ||/||v0

t − v1
t ||, {vt , v

0
t , v1

t } ⊂ gt is the ratio of
original grid side lengths, N is the total amount of triangular
vertices.

To encourage the neighboring grids to transform consis-
tently, we introduce an inter-grid loss L inter. For each vertex
vt and its neighboring vertices v0

t , v1
t along an edge of two

original neighboring grids, the two vectors 
vt = v̂1
t − v̂t and


v0
t = v̂t − v̂0

t formed by deformed vertices are encouraged to
be identical:

L inter(Ft , Gt ) = 1

M

∑

�v̂0
t ,v̂t ,v̂

1
t �

||v̂1
t − v̂t − (v̂t − v̂0

t )||22, (6)

where �v̂0
t , v̂t , v̂

1
t � are three successive deformed grid vertices

belonging to Ft ∗ Gt , along an original mesh edge, M is the
total amount of successive vertex tuples of the mesh. Figure 5
shows an illustration of the loss terms.

The shape-preserving loss is then defined as the combination
of the above two terms:

Lshape(Ft , Gt ) = γ1L intra(Ft , Gt ) + γ2 L inter(Ft , Gt ), (7)

with the weights set as γ1 = 1.0, γ2 = 20.0.
3) Temporal Loss: Simply applying the transformations

separately to every video frame can create wobble arti-
facts in the video. Therefore, we incorporate a tem-
poral loss term to enforce temporal coherency between
adjacent frames using the Siamese network architec-
ture. Each time two successive samples �It , st � and
�It−1, st−1� are fed into StabNet, two successive transfor-
mations Ft and Ft−1 are predicted. The temporal loss is
defined as the mean square error between the successive output
frames:

L temp(Ft , Ft−1, It , It−1) = λ
1

D
||Ft ∗ It − w(Ft−1 ∗ It−1)||22,

(8)

where D is the spatial dimension of frame, w(·) is a function
that warps the steady frame at t − 1 to the steady frame
t according to pre-computed optical flow, λ = 10.0 is a
constant. In our experiments we use TV-L1 algorithm [29] to
compute the optical flow, but alternative methods for optical
flow calculation can also be used.

C. Implementation Details

To train StabNet, we resize the videos to a spatial dimension
of W = 512 and H = 288 for efficiency. Pre-trained ResNet-
50 model on ImageNet [15] without the Conv 1 layer is loaded,
and is fine-tuned during the training process. We use mini-
batch size of 8 and ADAM [30] for optimization with β1 =
0.9, β2 = 0.999. Initial learning rate is set to 2e-5, and multi-
plied by 0.1 every 30, 000 iterations. The training is initialized
to learn identity transformations for 300 iterations before
introducing aforementioned losses. The training process is ter-
minated when reaching 90, 000 iterations. The whole training
process takes about 20 hours on an NVIDIA GTX 1080 Ti
graphics card.

In training process, we feed two successive samples to
the two branches (with shared network parameters) of Stab-
Net so that temporal coherency is aware during learning.
However, during testing, the network is used to stabilize a
single frame at a time; temporal consistency is automatically
preserved. Further, the stabilization processing is self-driven
for a test video as follows: we start by duplicating the
first frame and regard the duplicated frames as S1. After
stabilizing frame It , historical stabilized frames �̂It−31, ̂It−15,
̂It−7, ̂It−3, ̂It−1, ̂It � are regarded as St+1 for stabilizing the
next frame It+1. This process is repeated through the
time-line.

The stabilization results inevitably have meaningless frame
borders introduced by the warping function. As StabNet uses
stabilized frames as the inputs for future frames, we need
to make StabNet robust to such borders. During training,
we add some black borders produced by Homography per-
turbation around the Identity transformation to the ground-
truth historical frames. The Homography perturbances are
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TABLE I

ABLATION STUDY OF ARCHITECTURE, LOSS FUNCTION AND INPUT VARIATIONS. EACH ROW (EXCEPT THE FIRST COLUMN) FROM LEFT TO RIGHT
SHOWS THE STABILIZATION STATISTICS IN SIX SUB-SET OF VIDEOS FROM [5]: Regular, Quick Rotation, Quick Zooming, Parallax, Running AND

Crowd, IN THREE METRICS: Cropping Ratio (C), Distortion Value (D) AND Stability Score (S). THE FIRST TWO ROWS OF STATISTICS

SHOW PERFORMANCES OF ALTERNATIVE ARCHITECTURES, THE NEXT FIVE ROWS COMPARE THE RESULTS WITHOUT Feature,
Pixel, Temporal, Distortion AND Consistency LOSS FUNCTIONS, THEN THE RESULTS OF THREE INPUT VARIATIONS ARE

SHOWN. THE LAST ROW SHOWS THE PERFORMANCE OF THE PROPOSED NETWORK. SYMBOL “-” MEANS THE

CORRESPONDING NETWORK DOES NOT CONVERGE

randomly sampled between Hmin =
⎡

⎣

0.9 − 0.1 − 0.5
−0.1 0.9 − 0.5
−0.1 − 0.1 1

⎤

⎦

and Hmax =
⎡

⎣

1.1 0.1 0.5
0.1 1.1 0.5
0.1 0.1 1

⎤

⎦, where the image axis is

normalized to [−1, 1]. For testing, we crop and trim the
borders in post-processing. We plan to release source code
and pre-trained StabNet model.

V. EXPERIMENTAL RESULTS

We train the StabNet model on the DeepStab dataset, and
test it on various video sources. Testing videos are from
our DeepStab testing set, previous dataset [5] and mobile
phone cameras. On average, testing runs at 35.5 FPS on a
graphics card, which meets the requirement of real-time online
stabilization with 1 frame latency.

We use quantitative evaluation metrics, computed
following [14] to evaluate stabilization methods. The
three metrics are cropping ratio, distortion and stability.

Cropping Ratio: This metric measures the area of the
remaining content after stabilization. Larger cropping ratio
with less cropping is favored. Per frame cropping ratio is
computed as the scale component of the global Homography
Ht estimated from input frame It to output frame ̂It . Ratio
values of video frames are averaged to generate the cropping
ratio value of the whole video.

Distortion Value: Distortion value evaluates the distortion
degree introduced by stabilization. Per frame distortion value
is computed by the ratio of the two largest eigenvalues of the
affine part of the Homography Ht . The minimum value which
represents the worst distortion is chosen as the distortion value
for the whole video.

Stability Score: Stability score measures how stable a video
is. Following [14], we use frequency-domain analysis of cam-
era paths to estimate the stability score. Spatially distributed
camera paths are computed as vertex profiles for 4 × 4 mesh
grid vertices between successive frames. The vertex profiles
are then presented as 1D temporal signals for frequency

domain analysis. We take each of their lowest frequencies
components over full frequencies (DC component is excluded)
as the stability score [14]. Averaging from all profiles gives
the final score.

A. Ablation Study

In order to evaluate the effectiveness of our proposed
framework, we experiment with other possible network
architectures, loss functions and alternative input solutions.
We conduct an ablation study on public stabilization dataset
from [5] which consists of several video categories accord-
ing to scene type and camera motion, including Regular,
Quick Rotation, Quick Zooming, Large Parallax, Running
and Crowd.

1) Network Architectures: Because our network uses multi-
grid regressor (denoted as MGR) to learn transformations for
each input frame, here we evaluate how the proposed MGR
performs against the single-regressor one (denoted as SGR)
and the alternative MGR variations with various grid divisions.
We implement the variations using the same backbone ResNet-
50 encoder, and similar regressor architectures with the output
channels (h + 1) × (w + 1) × 2 adapted to mesh division
choices. In SGR, four frame vertex positions are regressed.
In MGR variations, 2 × 2 and 8 × 8 mesh vertex positions are
regressed, with architectures denoted as MGR-2 and MGR-8
respectively. As a result, the stability level of results from SGR
and MGR-2 are inferior to our MGR, as they regress coarser
grids; at the same time MGR-2 and SGR’s cropping ratio
values are generally higher than our method. This is because in
a method with a better stability, a more flexible warping must
be performed, with larger warping borders. We also observe
that although the mesh division of MGR-8 is finer than our
model, regressing transformations in such granularity ended
in failure.

2) Loss Functions: We test the proposed StabNet with some
of the loss terms turned off to validate the loss function
setup. We observed that without consistency loss, the network
training will not converge, and other alternative results are
worse than the proposed one.
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Fig. 6. Compare with publicly available videos from [5] in terms of three metrics.

3) Input Variations: We experiment with different stacked
input frame sequences during training the model. The vari-
ations are: 1) training one frame supervised by neighboring
historical frames as �I �

t−5, I �
t−4, · · · , I �

t−1, I �; 2) training one
frame supervised by uniformly distributed historical frames
as �I �

t−31, I �
t−25, I �

t−19, I �
t−13, I �

t−7, I �
t−1, I �; 3) training current

frame and a few future frames with historical guidance as
�I �

t−32, I �
t−16, . . . , I �

t−2, I �
t−1, I, It+1, It+2, . . . , It+16, It+32�.

Corresponding performances are reported in Table I, as a
conclusion, results from alternative inputs are inferior to the
proposed one in terms of stability. We also experiment with
the back-bone of ResNet-101, however the improvement is not
apparent, with running time increased.

B. Comparison With Publicly Available Results

We compare with [2]–[4], [12], and [14] using six publicly
available videos in terms of the objective metrics, based on
results provided by corresponding authors. Comparing with
offline stabilizations is slightly unfair for our method because
future-frames information is not available for our online
stabilization method in real-time. As a result, the stability
score of our method is slightly lower, occasionally with
probable visual artifacts of unnatural cross-frame wobbling
and distortion. This is mainly because our online method
only uses historical frames without holistic knowledge of the
full camera path. Nevertheless, our method performs in real
time while being visually comparable to all existing methods.
Comparison details are shown in Figure 6, for videos that we
were not able to find the result, we leave it blank.

C. Comparison With the State-of-the-Art Software

We further compare our method with commercial offline
stabilization software Adobe Premiere CS6 on dataset [5].
As far as we know, Adobe Premiere stabilizer is developed
based on subspace stabilization [4]. We choose the default
parameters for Adobe Premiere (smoothness: 50%, ‘Smooth
Motion’ and ‘Subspace Warp’) to produce results. Figure 7
shows an visualization of feature trajectories before and after

Fig. 7. Visualization of feature trajectories from an unsteady video and the
corresponding stabilized videos. Left: two stabilized frames by StabNet, with
feature trajectories (green) and the feature trajectories from the original video
(red) highlighted. Right: visualization of the average horizontal feature offsets
between neighboring frames along the time-line, from the original unsteady
video, Adobe Stabilizer and our StabNet.

TABLE II

RUNNING TIME COMPARISON. FPS STATISTICS ARE GIVEN IN THE

SECOND COLUMN. THIRD COLUMN SHOWS WHETHER FUTURE

FRAMES ARE REQUIRED FOR STABILIZATION

stabilization. Further evaluation on the test dataset is reported
in Figure 8. Please note that the online stabilization problem
is inherently harder than offline stabilization, because only
historical frames are available in online stabilization, without
the global sense of the camera path. Hence, the quantitative
performance statistics for online stabilization methods would
be inferior to offline ones. However the average running time
performance of our method is superior to all existing methods.
The running time performance is given in Table II.

D. Stabilizing Low-Quality Videos

One promising feature of StabNet is its robustness to low-
quality videos caused by noise, motion blur, etc. When dealing
with such videos, traditional methods could fail because of
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Fig. 8. Quantitative comparison with Adobe Premiere CS6 stabilizer on six categories of hand-held videos.

Fig. 9. Representative frames of low-quality videos. Please refer to the
supplementary video for stabilization result comparison.

either feature extraction failures from one frame or feature-
mismatches between frames. We demonstrate the superiority
of StabNet to traditional feature-based methods via four types
of low-quality videos captured by mobile phones: night-scene
videos, watermarked videos, blurry videos and noisy videos,
whose representative frames are shown in Figure 9.

1) Night-Scene Videos: We test the proposed network on
night-scene videos. Such videos are typically blurry and con-
tain severe noise, where wobble distortions can appear from
traditional feature matching-based stabilization methods.

2) Watermarked Videos: Watermarks such as logos or repet-
itive patterns can be overlaid on video frames. We synthesize
watermarked videos using repetitive patterns and overlay the
patterns at the same spatial positions across video frames. Such
repetitive watermark patterns can disturb feature matching
process from the original video content, resulting in false
feature matchings from existing stabilization methods.

3) Blurry Videos: Motion blur can appear in shaky frames
and cause uncomfortable viewing experience. Such motion
blur makes it difficult to extract and match features using
existing stabilization methods.

4) Noisy Videos: Videos could be noisy if capturing is
effected by poor illumination, high temperature, etc. Gaussian
noise could be introduced from multiple noise sources. In our
experiments, we synthesize noisy videos by adding Gaussian
noise to each video frame, and apply stabilization algorithms
to the videos. The match of features would fail using existing
stabilization methods.

In our experimental results, on low quality video cases,
StabNet performs robustly, while traditional stabilization

Fig. 10. User study result by comparing our method with Adobe Premiere
Stabilizer.

methods such as subspace stabilization [4] fail to generate
stable results. Please refer to the supplementary video for
visual comparison.

E. User Study

To visually compare our method with Adobe Premiere
stabilizer, we further conduct a user study with 20 partici-
pants aged from 18 to 32. We provide 18 videos from [5],
3 from each aforementioned category; and 12 low-quality
videos, 3 from each aforementioned type. In each testing
case, we simultaneously show the original input video, our
result, and the result from Adobe Premiere stabilizer to the
subjects. The two stabilization results are displayed horizon-
tally in random order. Every participant is asked to pick
the more stable result from the results of our method and
Adobe Premiere stabilizer, or mark them “indistinguishable”,
while disregarding differences in aspect ratio, or sharpness.
We show the average percentage of user preference for each
category in Figure 10. It can be concluded that for low-quality
videos, our method performs much better, and for videos
from Quick Zooming, Quick Rotation, Running categories, our
results are comparable with those from offline approach. For
other categories that were harder to process without future
frames, our results are slightly worse, which coincides with
our aforementioned discussion.

VI. LIMITATION AND CONCLUSION

StabNet has limitations. First, controlling cropping ratio is
not supported by our network, which may generate warping
borders in the stabilized video. However, like some exist-
ing offline video stabilization methods, with an automatic
processing of warping border trimming off after holistic path
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stabilization, the final rendered videos do not contain borders.
In our case, the stabilization (with warping borders) and
cropping bounding box position are computed and updated
progressively in an online stage. The warping borders can
be further trimmed off with an automatic post-processing
cropping stage, based on the computed bounding box. Never-
theless, one possible way to control cropping ratio is to train
a network conditioned with a required specific cropping ratio,
which we regard as a future work. Second, in scenes with
drastic motion or with extreme near-range foreground objects,
our method may fail, this is because our model learns to warp
the unstable camera to a virtual stable camera with parallax.
We note that these scenarios are also challenging for previous
methods [3]–[5], [14]. Third, our solution is purely based on
software. Fused video stabilization with additional gyro signals
using CNNs [13] is an interesting future research direction.

To summarize, we have presented StabNet, a convolu-
tional network for digital online video stabilization. Unlike
traditional methods which calculate estimated camera paths,
StabNet learns warping transformations of multi-grids for each
unsteady frame, using only historical stabilized frames as
condition. It runs in real time by fast feed-forward operations.
We also present the DeepStab dataset–a dataset consisting
of pairs of synchronized steady/unsteady videos for train-
ing. This dataset was created using a practical method to
generate training videos with synchronized steady/unsteady
frames, which could benefit future deep stabilization methods.
To our knowledge, StabNet is the first CNN model for video
stabilization. We have demonstrated the power of StabNet for
handling typical types of hand-held videos and its advantage in
stabilizing low-quality videos. We believe CNN-based meth-
ods are a promising direction for digital video stabilization.
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