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Abstract—In this paper, a novel approach to encode lenslet
images is proposed. The method departs from traditional block-
based coding structures and employs a hexagonal-shaped pixel
cluster, called macro-pixel, as elementary coding unit. A novel
prediction mode based on dictionary learning is proposed,
whereby macro-pixels are represented by a sparse linear com-
bination of atoms from a generic dictionary. Additionally, an
optimized linear prediction mode and a directional prediction
mode specifically designed for macro-pixels are proposed. Rate-
distortion optimization is utilized to select the best intra pre-
diction mode for each macro-pixel. Experimental results on the
EPFL light field image dataset show that the proposed coding
system outperforms HEVC and the state-of-the-art in lenslet
image coding with an average PSNR gain of 3.33 dB and 1.41

dB, respectively, and with rate savings of 67.13% and 34.30%,
respectively.

EDICS: IMD-CODE image/video coding and

transmission

I. INTRODUCTION

THE plenoptic camera gained popularity due to its con-

sumer level prices and provided functionalities. In con-

trast to conventional cameras, which only record light inten-

sity, plenoptic cameras record information about the incoming

light from multiple directions, i.e., they provide spatial and

angular information in the captured images.

The plenoptic function describes the amount of light travel-

ling through every point in space in any direction at any time

instance and over any wavelength [1]. This seven-dimensional

function is usually approximated by the Light Field (LF)

vector function, using the camera plane and the propagation

angles for the primary colors at a given time instance. LF

images are captured using one of the following methods: by

moving a camera and acquiring images at some specific points

in space [2]; using camera arrays [3] to obtain small baseline

data known as High Density Camera Array (HDCA) images

[4]; using coded apertures [5]; and using microlens arrays,

yielding what is known as Lenslet (LL) images [4]. The

technological advances in the production of microlens arrays

brought by companies such as Lytro, Inc. [6], [7] and Ratrix

GmbH [8] were materialized in consumer-level plenoptic

cameras. Such cameras find applications in numerous domains,

including image re-focusing [9], image-based rendering [10],

R. Zhong, I. Schiopu, B. Cornelis, S.-P. Lu, and A. Munteanu are with
the Department of Electronics and Informatics, Vrije Universiteit Brussel,
Brussels, Belgium.

J. Yuan is with Department of Computer Science and Engineering, Univer-
sity at Buffalo, Buffalo, NY, USA.

Manuscript received August 31, 2017; revised February 26, 2018.

Fig. 1. Illustration of the concept of the plenoptic camera, where the main lens
is focusing the light rays reflected by the object onto the microlens plane. The
macro-pixel corresponding to a microlens is depicted as a hexagonal-shaped
mask of size h× h which selects the nonzero pixels in the microlens image,
where h is the diameter in pixels of the microlens.

computer graphics [11], [12], free-viewpoint video [13], and

many more [14].

Light field cameras can be categorized into (i) unfocused

plenoptic cameras (e.g. Lytro), introduced by Adelson and

Wang [15], and Ng et al. [16], and (ii) focused plenoptic

cameras (e.g. Raytrix), introduced by Lumsdaine and Georgiev

[17] and Perwaß and Wietzke [18]. In this work we address

the compression problem for unfocused plenoptic cameras. For

these cameras, the main lens is focusing the object’s reflected

light rays onto the microlens plane, as illustrated in Fig. 1.

Each microlens is capturing the converging incoming light rays

and is directing them onto the image plane represented by the

camera sensor. Each circular microlens of a plenoptic camera

produces a so-called macro-pixel [15], [19] which records the

incoming light intensity from a discrete set of directions. The

overall resolution of the LF image depends on the resolution

of each microlens and the microlens array size; for example,

the Lytro II camera has a resolution of 40 “Megaray” [20].

Traditional state-of-the-art compression systems were

proven to be inefficient when directly applied on lenslet

images, due to the inherent spatial discontinuities amongst the

macro-pixels. To cope with the large amount of data produced

by such cameras, novel compression systems enabling efficient

storage and transmission of lenslet images are of paramount

importance.

In this paper, a novel compression scheme for lenslet

images is proposed. The method introduces a novel prediction
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mechanism based on dictionary learning, as well as optimized

linear prediction and directional prediction of macro-pixels.

In summary, the novel contributions of this paper are as

follows:

1) the use of macro-pixels as elementary coding units [21]

instead of traditional block-based coding structures used

in conventional codecs such as HEVC;

2) a novel dictionary learning method for macro-pixel

prediction;

3) design of optimized linear prediction of macro-pixels;

one improves over our previous L1 minimization of the

prediction error of [21], [22] by accounting for both

distortion and rate in the predictor design, not only for

the distortion; additionally, both L1 and L2 distortion

metrics are considered, not only L1.

4) extension of HEVC’s directional intra-modes proposed

in our previous work [22] with novel directional macro-

pixel prediction modes by employing the concept of

multi-hypothesis intra-prediction; to this end, different

configurations of neighboring macro-pixels are used as

references in directional intra-prediction;

5) optimal rate-distortion selection of the proposed intra-

prediction modes and a thorough analysis of the perfor-

mance provided by these modes;

6) adaptation of HEVC’s coding tools to encode residuals

for the proposed intra-prediction modes;

7) comparison against state-of-the-art techniques in the

literature, demonstrating that the proposed method out-

performs the state-of-the-art in lenslet image coding.

The remainder of this paper is organized as follows. Section

II discusses the state-of-the-art methods. Section III describes

the proposed method. Section IV analyzes the performance of

the proposed method. Section V concludes the paper.

II. RELATED WORK

The traditional JPEG standard [23] was tested for lenslet

image compression and it proved to be inefficient when applied

to this type of images. A powerful alternative is given by

the state-of-the-art standard in video coding, namely, High

Efficiency Video Coding HEVC [24], which has showed

substantially improved compression performance over all its

predecessors. However, HEVC was designed with the as-

sumption of local spatial and temporal continuities in video.

Since the LF images are characterized by systematic spatial

discontinuities between microlens images, the standard HEVC

becomes inefficient when encoding this type of data. For an

efficient encoding, we find it necessary to adopt the macro-

pixel as elementary coding unit and to exploit the inherent

redundancies between macro-pixels in the coding system.

Prior art in the area of lenslet image coding includes a

variety of techniques. Wavelet compression and intra predic-

tion methodologies were proposed as means for exploiting

the intra-frame redundancies. In [25] the authors propose

a 4-dimensional Discrete Wavelet Transformation (DWT),

combined with the Set Partitioning into Hierarchical Trees

(SPIHT) algorithm to code the resulting wavelet subbands.

The resulting DWT compression system provides progressive

decoding of LF data. An extension is presented in [26] where

disparity compensation is performed in the wavelet subbands

prior to hierarchical encoding. To further decrease the re-

dundancy within subbands, wavelet compression is applied

to viewpoint images generated by extracting corresponding

pixels from each microlens instead of the original integral

image [27]. In [28], the low-frequency bands, decomposed

from reconstructed viewpoint images via a 2D DWT, is

coded by a 3D Discrete Cosine Transform (DCT) followed by

Huffman coding, while the high-frequency bands are directly

processed by arithmetic coding. The above wavelet-based

coding schemes provide quality scalability and a complete

framework to explore intra-frame redundancies of LF images

in the frequency domain.

An alternative to minimize redundancies in the spatial

domain is to apply intra prediction directly on microlenses.

Self-Similarity (SS) compensated intra-prediction [29] was

designed for particular arrangements of microlenses, providing

an alternative way to exploit the spatial redundancies in LF

images. Bi-directional SS compensation based intra-prediction

[30] was proposed to further minimize the prediction error

for microlenses with slight view disparities. For the specific

rectangle pattern of micro-lenses [29], [30], these SS based

intra-prediction methods achieve high coding efficiency and

low prediction error. Similarly, a local linear embedding

method was proposed in [31] and included into specifically

designed HEVC’s directional intra prediction modes for rect-

angle microlenses. Recently, local redundancies were exploited

by a Gaussian regression based prediction, integrated into

directional intra prediction as a prediction mode [32]. To

further explore the repetitive patterns of LF images, in [33]

uni-directional and bi-directional SS search based schemes for

reference selection compete to decrease the prediction residu-

als under a Rate-Distortion Optimization (RDO) criterion.

The plenoptic camera can be regarded as an acquisition of

conventional 2D images from different viewpoints, at very

small distances in between them. In [34], an inter prediction

coding method was proposed to capture the redundancies

between neighbouring viewpoints. One of the views is intra-

coded and serves as reference for predictive coding of the

remaining views. Another alternative is to generate multiple

viewpoints from a LF image, and to utilize the multiview

video coding MVV extension [35] of the HEVC standard

on the resulting multiview data. In [36] a 2D warping-based

disparity compensation is employed to optimize the prediction,

and a linear interpolation is performed to further decrease

the coding residual for MVV. To further take advantage of

inter-frame and inter-view predictions, a joint motion and

disparity estimation method is proposed in [37]. Furthermore,

the organization of MVV extracted from LF is regarded as

a traveling salesman problem, as well as a lifting transform

is applied to obtain disparity compensated LF data, which

succeeds to combine the wavelet transform with inter-view

prediction [38].

Many contributions were submitted to the ICME 2016

Grand Challenge on LF Image Compression [39]; the bi-

predicted SS compensated prediction [29] was one of the

accepted contributions. In [40], the plenoptic image is par-
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Fig. 2. The proposed coding system whereby dictionary learning-based,
directional and optimized linear prediction modes are competing to provide
rate-distortion optimized intra prediction for each macro-pixel.

Fig. 3. Example of an 4×5 microlens array. (a) Initial macro-pixel positions.
(b) Macro-pixel positions after re-alignment.

titioned into equal tiles, which are scanned in a specific order

so that a pseudo video-sequence is generated and used as

input for HEVC. In another approach for generating the

pseudo video-sequence [41], the conversion from LF image to

MVV is carried out by collecting the pixels having the same

coordinates in a macro-pixel. In [42], a specific hierarchical

reference structure is designed for HEVC-based inter-coding

of the pseudo video-sequence.

In our previous work [21], we proposed an L1-optimized

prediction algorithm that predicts the macro-pixel as a linear

combination of the neighboring reconstructed macro-pixels.

This approach exploits the fact that pixels with the same spatial

coordinates within neighboring macro-pixels are spatially cor-

related. In recent work [22], yet to be published, we further re-

duced the spatial redundancies by designing new HEVC-based

directional intra-modes for the macro-pixels. The following

section builds on these two approaches bringing substantial

improvements over their initial designs. Additionally, a novel

intra-prediction method for macro-pixels based on dictionary

learning is proposed. Based on these methods, a novel lenslet

compression system is devised, where the three types of coding

methods are competing in rate-distortion sense. This is detailed

next.

III. PROPOSED LENSLET COMPRESSION SYSTEM

The proposed lenslet image coding system is illustrated

in Fig. 2. The system, which follows a closed-loop predic-

tive coding paradigm, takes as input the lenslet image (see

Fig. 3(a)) and performs intra-prediction and coding of each

macro-pixel. The proposed intra-coding methods, denoted in

the following by ξ, include dictionary learning-based intra-

prediction, directional prediction, and optimized linear pre-

diction. The coding mode selection is governed by a rate-

distortion optimization framework (RDO block in Fig. 2),

which provides optimal intra coding for each macro-pixel.

The proposed intra-prediction methods operate in different

manners on the macro-pixels. The dictionary learning-based

and the optimized linear prediction methods re-align the

macro-pixels from the initial lenslet image (see Fig. 3(a))

to a grid structure, as depicted in Fig. 3(b). The directional

intra-prediction method is using five other macro-pixel re-

alignments, as further detailed in Section III-C.

Compared to our previous design in [21], the optimized

linear prediction method proposed in this paper solves a

different optimization problem by taking into account the

rate needed to encode the residuals and the coding mode.

Additionally, the method formulates the optimization problem

using both the L1 and L2 norms, generating two distinct sets

of optimized linear prediction modes.

The directional intra-prediction problem, of which incipient

results will be published in [22], is further investigated and

new neighbourhood configurations are proposed by accounting

for the alignment of microlenses in a plenoptic camera.

The paper proposes a novel dictionary learning method,

which is employed to learn the basic atoms of a generic

dictionary from a training set of LF images, and which is used

to linearly represent the macro-pixels based on the learned

dictionary. We note that in contrast to the previous two modes,

the proposed dictionary-learning based prediction method does

not make use of the reconstructed neighbouring macro-pixels

to predict the current macro-pixel.

The remainder of this section is organized as follows:

Section III-A introduces the proposed dictionary learning-

based intra-prediction method; the proposed optimized linear

prediction approach is presented in Section III-B; Section III-C

describes the proposed directional intra-prediction method;

Section III-D presents the adopted entropy coding of intra-

coding modes; finally, Section III-E details the rate-distortion-

driven selection of the optimal coding modes.

A. Dictionary learning-based method

Dictionary Learning (DL) is a popular methodology that

aims at finding a sparse representation of a signal (or collection

of signals) by expressing it as a linear combination of only a

few atoms from an over-complete dictionary. A crucial part

in DL is to define a proper dictionary so that the signal is

accurately represented by using the smallest possible number

of atoms. A wide range of analytically-defined dictionaries

was presented in literature, such as the overcomplete DCT,

wavelet and shearlet dictionaries [43], to cite a few. However,
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it was shown that learning the dictionary from the signal itself

usually yields sparser representations [44].

Given the set of N input signals {yi}i=1,2,...,N ,

where each signal yi contains n data samples, yi =
[

y(1) y(2) · · · y(n)
]T

, corresponding to a vectorized

macro-pixel, the proposed method represents the input matrix

Y =
[

y1 y2 · · · yN

]

, of size n × N, using a reduced

number of atoms from the dictionary Φ, of size n× d, where

d is the number of atoms in the dictionary. The atoms are

selected using the sparse matrix X =
[

x1 x2 · · · xN

]

,

of size d × N, where each sparse vector xi, of length d, is

constrained to have a sparsity s, defined as ‖xi‖0 ≤ s, where

‖·‖
0

is the ℓ0 pseudo-norm, so that xi is combining only s

nonzero elements from Φ.

The dictionary learning problem can be formulated as:

argmin
Φ,X

‖Y −ΦX‖
2

F s.t. ‖xi‖0 ≤ s ∀i, (1)

where ‖·‖F is the Frobenius matrix norm.

A wide variety of iterative algorithms [45] were proposed

in the literature to solve the non-convex problem (1). The

usual approach is to alternate between a step that learns the

sparse codes and a dictionary update step, like the method

of Olshausen and Field [46]. However, to learn the inherent

underlying structure of very large datasets, the number of

required training samples increases drastically. Consequently,

these methods are restrained to work on relatively small

patches, extracted from the visual data. Furthermore, tradi-

tional dictionary learning methods require updating the en-

tire dictionary repeatedly, which is a costly operation. To

alleviate these problems, an Online Sparse Dictionary Learn-

ing (OSDL) algorithm is proposed in [47]. OSDL builds

structured dictionaries based on the so-called double-sparsity

model, which combines a fixed base dictionary φ with an

adaptable sparse component A, i.e., Φ = φA. The OSDL

approach allows for working with larger datasets and it was

shown to have a faster convergence rate over traditional

dictionary learning methods.

The dictionary learning problem from (1) can be rewritten

using OSDL as follows:

argmin
A,X

‖Y − φAX‖
2

F s.t.

{

‖ai‖0 = ν ∀i
‖xj‖0 ≤ s ∀j

, (2)

where ν is the sparsity for A, and the base dictionary

φ consists of cropped fully separable wavelets, enabling a

multiscale analysis, free of border artefacts.

In this paper, a novel intra-prediction mode is proposed by

combining RDO with online sparse dictionary learning.

Specifically, the input signal Y is reconstructed as Ŷ =
[

ŷ1 ŷ2 · · · ŷN

]

= φAX, where only the nonzero ele-

ments found in X are transmitted to the decoder using their

positions in X and their values. Therefore, the following

information needs to be transmitted to the decoder:

(i) the nonzero coefficient values stored in the coefficient

matrix, denoted by Xnonz, which are transformed, quan-

tized, and encoded using CABAC [24] operating with

various values of the quantization parameter QP, denoted

here for simplicity by q;

Fig. 4. The partition of N = 16 macro-pixel samples into an optimized
quadtree structure with Nm = 7 nodes.

(ii) the position of the nonzero coefficients, which are marked

in the nonzero label positions matrix, denoted by Pnonz,

and which are losslessly encoded to guarantee an accurate

reconstruction of the input signal.

The dictionary learning problem is now formulated as:

argmin
A,X

‖Y − φAX‖
2

F + λRDL s.t.

{

‖ai‖0 = ν ∀i
‖xj‖0 ≤ s ∀j

, (3)

where the signal is reconstructed at a distortion level, DDL,

given by:

DDL = MSE(Y, Ŷ) =
N
∑

i=1

‖yi − ŷi‖
2

F . (4)

The rate RDL necessary to attain the distortion DDL is given

by:

RDL = RP (Pnonz) +RX(Xnonz), (5)

where RP (Pnonz) and RX(Xnonz) are the number of bits

needed to encode Pnonz and Xnonz, respectively. The two

rate components are determined as:

RP (Pnonz) = α1 ·Nm, (6)

RX(Xnonz) = α2 · q + β2, (7)

where α1 is a parameter which depends on the sparsity level

s and the length of the coefficient vectors d, computed as

α1 = s log2 d; (α2, β2) is the pair of parameters of the least-

squares regression line [48] used to encode the coefficients;

Nm is the number of vectors from Xnonz transmitted to the

decoder.

Our tests have shown that the similar characteristics

amongst neighbouring macro-pixels yield redundancies in

Pnonz. Here a Quadtree merging algorithm [48] is introduced

to reduce the redundancy of Pnonz, by merging neighbouring

position vectors. The idea is to make a binary decision for

merging four neighbouring macro-pixels at each node by

minimizing a Lagrangian cost function. The optimized tree

structure is established with Nm branches. The procedure

associates to each branch a list Si, i = 1, 2, . . . , Nm, where Si

contains the list of macro-pixels grouped by the quadtree such

that they are associated to one position vector. Fig. 4 shows an

example of merging applied to a set of N = 16 macro-pixels.

A representative selection of lenslet images is used as input

for the dictionary learning training procedure, which computes

a generic dictionary Φ used for all images in the test set.

Since the dictionary is common for all test images, it does
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not need to be transmitted. For each encoded lenslet image, a

specific coefficient matrix X is computed and encoded using

the presented algorithm, so that the decoder can reconstruct

the macro-pixels via linear combinations of the selected atoms.

The dictionary learning-based method yields one intra-

prediction mode, which is collected by ξ and characterized

by the pair (RDL, DDL).

B. Optimized linear prediction method

The second intra-prediction method proposed in this paper

is based on the concept of adapting the coding architecture

to the lenslet image characteristics by employing the macro-

pixels as basic prediction unit. Here, the currently predicted

macro-pixel, denoted by T, is predicted linearly based on the

three closest macro-pixels in its causal neighborhood, denoted

by M1,M2,M3, which correspond to the Northern, Western

and Northwestern macro-pixels. In this paper, a generic macro-

pixel with the label T has a corresponding vector T of length

n, which collects the values of the pixels contained in the

macro-pixel mask. Therefore, the reconstructed macro-pixel,

T̃, is expressed as a linear combination of M1,M2,M3, of

the form T̃ = Mω, where ω is the weight vector defined

as ω =
[

ω1 ω2 ω3

]T
, {ω1, ω2, ω3} ∈ R,

∑3

i=1
ωi = 1,

and M ∈ R
n×3 is a matrix which collects the causal

neighbourhood of T as M =
[

M1 M2 M3

]T
.

The optimization problem consists of searching for the

optimal weight vector, ω∗, for which the residual ‖T−T̃‖p is

minimized, where p denotes the norm used in the optimization

problem. The Optimized Prediction (OP) mode introduces in

the competition, both the L1 norm, by setting p = 1, and the

L2 norm, by setting p = 2. Hence, the optimization problem

is formulated as:

min
ω

‖T−Mω‖
2

p s.t.

3
∑

i=1

ωi = 1. (8)

Encoding the original weights ω∗ obtained by solving (8)

for each macro-pixel would require a large rate. Therefore,

the weights ω∗ are subsequently clustered by means of the

K-means clustering algorithm [49] for an efficient encoding.

Let B denote the total number of clusters. The indexing of

the weights is done according to each of the B cluster centers.

During the intra prediction process of each macro-pixel, the B

prediction modes are traversed and the best linear prediction

mode is determined as:

ω̂ = argmin
ω∈W

‖T−Mω‖
2

p + λROP , (9)

where ROP is the rate of encoding in the OP mode, W =
{ω1,ω2, · · · ,ωB} is the set of trained prediction weights (i.e.

the cluster centers resulting from K-means clustering), and

ω̂ = ωo is the optimal weight vector with the position index

o ∈ {1, 2, . . . , B} in W .

ROP depends on both the cost of coding the residual, T−
T̃ = T−Mω, and on the cost of encoding the index of the

weight vector ω in W ; formally, ROP is thus given by:

ROP = Rres(T− T̃) +Rind(ω), (10)

Fig. 5. Sample selection of the χc and χr vectors. Note that M̃sw is
unavailable at the decoder, and it is replaced with a copy of one of the macro-
pixels from the rows above it.

where Rres(T−T̃) is the rate of encoding the residual T−T̃

using CABAC, and Rind(ω) is the rate of encoding the index

positions of the weight vector ω in W .

The proposed optimized linear prediction method yields two

sets of intra prediction modes, which are collected by ξ. More

exactly, a set of B modes is obtained by using the L1 norm

in (8), and another set of B modes is obtained using the L2
norm; in our experiments, we set B = 32.

The goals of our design are to either sparsify the prediction

error (when using the L1 norm) or to minimize the mean

square error of the prediction error (when using the L2
norm). One cannot say beforehand which norm yields the best

performance, as rate also matters. To this end, the RDO (rate-

distortion optimization) module decides the best mode in rate-

distortion sense.

C. Directional prediction method

The third proposed intra-prediction method, dubbed Direc-

tional Prediction (DP), eliminates the spatial redundancies in

macro-pixels by estimating the samples in the target macro-

pixel based on the previously reconstructed neighbouring

macro-pixels. The inherent spatial discontinuities between

neighbouring macro-pixels in LF images break the assumption

of local spatial continuity employed in conventional block-

based codecs, such as HEVC. That is, directly applying the

directional intra-prediction modes of HEVC proves to be

inefficient on LF images. Hence, new directional prediction

methods for LF images are needed that aim at capturing the

spatial redundancies by means of directional prediction.

The proposed DP method can be summarized in three

steps: (i) macro-pixel extrapolation; (ii) sample selection; (iii)

directional prediction.

Macro-pixel extrapolation

In the proposed DP method, in the first step, the recon-

structed macro-pixels are extrapolated to generate correspond-

ing h×h blocks (h = 17 for the Lytro camera). Let us consider

the generic case of a reconstructed macro-pixel, denoted as M,

and let M̃ denote the extrapolated version of it. The macro-

pixel extrapolation process contains a vertical extrapolation

followed by a horizontal extrapolation, whereby the pixels in

blank areas are copied from the closest boundary pixels.
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A horizontal extrapolation for the current pixel position

(x, y), at row y and column x, is performed as follows:

M̃(x, y) = M(xz, y), (11)

where M(xz, y) is the closest available pixel in M, found

on column xz and on the same row y. Note that due to the

symmetrical shape of the macro-pixel, xz > x, for x < h
2
,

and xz < x, for x > h
2
.

The vertical extrapolation is done in a similar way, this time

on column x, where M(x, yz) is the closest available pixel in

M, found on row yz and on the same column x.

The resulting blocks M̃ are aligned in a grid struc-

ture (see Fig. 5 for an example of a possible alignment).

In principle, the current macro-pixel, denoted by T̃ (see

Fig. 5), is reconstructed by using the neighboring macro-

pixels M̃n, M̃w, M̃nw, M̃ne, M̃sw, found at the Northern

(n), Western (w), Northwestern (nw), Northeastern (ne), and

Southwestern (sw) positions respectively from the current

macro-pixel T̃. We note that, due to the image row-wise scan,

M̃sw is unavailable at the decoder, therefore it is replaced with

a copy of one of the above macro-pixels, i.e, in this case M̃w

or M̃nw.

Sample selection

The main idea of the method is to generate two sets of

samples, one on the horizontal direction and one on the

vertical direction, used by the directional prediction method

(see Fig. 5). The sample found on the bottom-right corner of

M̃nw, denoted r0 = M̃nw(h, h), is also used by the method.

The samples on the horizontal direction are collected in a

vector χc of length 2h, while the samples on the vertical

direction are collected in a vector χr also of length 2h.
Fig. 5 shows how the two vectors are set using the denoted

neighborhood. The vector χc is set using the last row, x = h,

from the reconstructed macro-pixels M̃n and M̃ne, and it is

defined as

χc =
[

Mn(1, h) Mn(2, h) · · · Mn(h, h)

Mne(1, h) Mne(2, h) · · · Mne(h, h)
]T . (12)

Similarly, the vector χr is set using the last column, y = h,

from the reconstructed macro-pixels M̃w and M̃sw, and it is

defined as

χr =
[

Mw(h, 1) Mw(h, 2) · · · Mw(h, h)

Msw(h, 1) Msw(h, 2) · · · Msw(h, h)
]T . (13)

In this paper, we introduce five Neighborhood Configu-

rations (NC) for the current macro-pixel. Let us consider

the original alignment shown on the left of Fig. 6, where

the current macro-pixel, T, has a causal neighborhood of

five macro-pixels: {Mi}i=1,2,...,5, four of them placed on the

previous row and one place on the current row, to the left of T.

After applying extrapolation we obtain the set {M̃i}i=1,2,...,5

and T̃. Fig. 6 shows the proposed five NC, denoted NC1,

NC2, . . . , NC5, which are obtained as follows:

• Shift the previous row to the right with h
2

and set:

– r0 = M̃1(h, h);
– for generating χr : M̃n = M̃2 and M̃ne = M̃3;

– for generating χc :

(NC1) M̃w = M̃5 and M̃sw = M̃5;
(NC2) M̃w = M̃1 and M̃sw = M̃5;

• Shift the previous row to the left with h
2

and set:

– r0 = M̃2(h, h);
– for generating χr : M̃n = M̃3 and M̃ne = M̃4;
– for generating χc :

(NC3) M̃w = M̃5 and M̃sw = M̃5;
(NC4) M̃w = M̃2 and M̃sw = M̃5;

• Keep the original alignment and set:

– r0 = M̃2(h, h);
– for generating χr :

M̃n =
[

M̃2(
h
2
: h, :) M̃3(1 : h

2
, :)

]

and

M̃ne =
[

M̃3(
h
2
: h, :) M̃4(1 : h

2
, :)

]

;
– for generating χc :

(NC5) M̃w =
[

M̃2(:,
h
2
: h) M̃5(:, 1 : h

2
)
]

and

M̃sw =
[

M̃5(:,
h
2
: h) M̃5(:, 1 : h

2
)
]

.

Directional prediction

The directional prediction of a sample found at row y, and

column x in T̃ is computed as follows:

T̃(x, y) =
[

PT
kχc +QT

kχr

]

, (14)

where the vectors Pk and Qk, of length 2h, are the kth

parameter sets, k = x + y · h, with two nonzero elements,

and [·] is the rounding function. The pair (Pk,Qk) depends

on the pixel’s coordinates, 0 ≤ x, y ≤ h, and the angle

gi = ei
32

associated with the directional mode with index

i, where ei is the angular number corresponding to gi, as

shown in Fig. 7. The two nonzero elements are located at the

consecutive positions n and n+1, and are denoted by dn and

dn+1. Their values are computed as follows:

n = x+ ⌊y · gi⌋, (15)

dn =

{

y · gi +
⌈

|y · gi|
⌉

, gi < 0
y · gi −

⌊

y · gi
⌋

, gi > 0
, (16)

dn+1 = 1− dn. (17)

dn is employed to determine which vector contains the two

nonzero elements:

dn ∈ Qk, ∀gi ∈
[

H − 27 H + 32
]

, i = 2, 3, . . . , 18, (18)

dn ∈ Pk, ∀gi ∈
[

V − 32 V + 32
]

, i = 19, 20, . . . , 36. (19)

For each of the five NC, the DP method generates h intra-

prediction modes using χl, h intra-prediction modes using

χr, and one using r0, resulting in a total of 2 · h + 1 = 35
intra-prediction modes for each NC. Moreover, the traditional

DC and planar modes from HEVC are also included in

competition together with the new DP modes proposed above.

This results in 5·(2·h+1)+2 = 177 intra-prediction modes

for the DP method, which are all collected by ξ. The index

of directional prediction, i, is set: i = 0 for the HEVC’s

DC mode, i = 1 for the HEVC’s planar mode, and i =
2, 3, . . . , 36 for the DP modes described by (18) and (19).

If the new DP modes are selected, the NC is encoded using

separate symbols (see Section III-D).
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Fig. 6. The 5 cases of neighbourhood configurations for the directional intra-prediction mode. The original alignment found in the plenoptic camera is

shifted with h

2
to the left, to the right, or keep the same positions. For the cases which involved shifting, the western (M̃5) and northwestern (M̃1 or M̃2)

macro-pixels are used to generate two different configurations.

Fig. 7. Directional prediction modes for encoding the current macro-pixel T,

corresponding to the directional prediction with indexes i = 2, 3, . . . , 36.

One may note that the proposed Directional Prediction (DP)

method has a similar design to the intra prediction method in

classical codecs. However, the key concept of the proposed

DP method is to derive directional predictors by employing

various sets of reference pixels, i.e., by employing multi-

hypothesis intra-prediction. The DP mode aims at capturing

directional features in macro-pixels. It does succeed in doing

so, but it may not necessarily survive the RDO competition

against the other methods.

D. Entropy coding of intra-prediction modes

The encoder processes blocks of N = 16 macro-pixels at a

time. For the DL method, each macro-pixel within the block

is independently predicted, as detailed in Section III-A. The

OP and DP prediction methods employ decoded macro-pixels

located in the causal neighbourhood of the macro-pixel being

predicted, as detailed in Sections III-B and III-C respectively.

The HEVC standard was modified and we added the

necessary syntax elements to implement the proposed codec.

The original syntax elements of HEVC intra prediction consist

of the CU skip flag, the Most Probable Modes, and the

block residual coefficients for intra prediction [50], [51], and

are now encoded here using CABAC.

The index of the intra prediction mode is encoded using

the syntax index mpm idx using an alphabet of symbols

{0, 1, . . . , 69}, where one symbol corresponds to the DL-

based mode, 32 symbols to the OP mode, and 37 to the DP

mode. If an OP mode is selected, a binary vector, denoted

πOP , is collecting an index selection between L1 and L2
norm. If a DP mode is selected, a NC vector, denoted πDP ,

is collecting an index selection for the corresponding DP

neighborhood configuration. Both πOP and πDP are encoded

using an Adaptive Markov Model (AMM) [52] of order 2,
with an alphabet of 2 and 5 symbols, respectively.

The HEVC closed-loop coding paradigm, i.e., entropy

decoding followed by inverse quantization and transformation,

are included in the encoder and are performed to generate

the reconstructed macro-pixels. The encoding and decoding

processes are part of the loop; this guarantees that correct

encoding is performed by matching the encoder with the

corresponding decoder, even if the processing unit is changed
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TABLE I
ICME 2016 IMAGE TEST IMAGES

Image ID Image name

I01 Bikes
I02 Danger de Mort
I03 Flowers
I04 Stone Pillars Outside
I05 Vespa
I06 Ankylosaurus & Diplodocus 1
I07 Desktop
I08 Magnets 1
I09 Fountain & Vincent 2
I10 Friends 1
I11 Color Chart 1
I12 ISO Chart 12

from a block to a macro-pixel.

E. Rate-distortion optimization

The optimal intra-prediction mode is selected as the mode

which yields optimal rate-distortion performance. This is de-

termined by solving the following minimization problem:

k∗ = argmin
k∈{DL,OP,DP}

(Dk + λRk), (20)

where Dk and Rk are the distortion and rate respectively as-

sociated with mode k selected among the Dictionary Learning

(DL) mode (see Section III-A, eqs. (3)-(7)), the 2·B Optimized

Linear Prediction (OP) modes (see Section III-B, eqs. (8)-

(10)), and the 177 Directional Prediction (DP) modes (see

Section III-C, eqs. (11)-(19)) respectively. We note that the

rate needed to entropy code the mode itself (see Section III-D)

is also accounted for in the above minimization problem.

IV. EXPERIMENTAL EVALUATION

A. Experimental Setup

The same evaluation procedure as in [56] is followed in

the experimental evaluation of the proposed coding system,

i.e., we use the EPFL test set consisting of 12 LF images to

evaluate the coding performance. Table I presents the most

used associated labeling for the images in the EPFL test

set, where each raw image has a resolution of 7728 × 5368
pixels, which require 51, 854, 880 bytes for storage. The raw

images are first demosaiced, devignetted, clipped from 10-bit

to 8-bit representation, color calibrated, and converted to the

YCBCR4:2:0 color-map representation.

Images ‘House and Lake’, ‘Palais du Luxembourg’, ‘Red

and White Building’, and ‘Sophie and Vincent 1’ from the

dataset presented in [53] were used to train the dictionary.

The resulting dictionary was used for all the other test images

in the dataset. To assess the robustness of the proposed DL-

based prediction method against changes in the training set,

we have carried out experiments using 5 different training sets,

each set containing 4 images selected from the 12 images in

the EPFL dataset, the other 8 images being used for testing.

We have trained 5 different dictionaries and computed the

performance differences between the average PSNR obtained

with the proposed method and the PSNR obtained with the

reference methods. The experiments reveal that, for each

dictionary, the PSNR differences relative to the reference

methods are maintained. It is also important to point out that

the performance differences relative to the reference methods

have a very small variance: the PSNR does not change with

more than 0.2 dB relative to the mean.

To demonstrate the advantages of the proposed compression

method, we compare the PSNR and the codelength of the

encoded LF images against the following coding systems:

(i) HEVC operating in intra-mode [57], serving as reference

codec for the consumer market, denoted here HMINTRA;

(ii) LLE and SS compensated prediction [54], denoted here

SSPRED; (iii) the state-of-the-art pseudo-sequence-based com-

pression of [41], denoted here PSEUDOSEQ; (iv) the pseudo-

sequence-based 2D hierarchical coding structure of [42],

denoted here PSEUDOH; (v) the recent work described in

[55], denoted here as TIP2018; (vi) our previous method

presented in [22], denoted L1PRED. The experiments are per-

formed using 4 QP s, namely 22, 27, 32, and 37. Compared to

HMINTRA, we notice substantial performance improvements

achieved by the proposed method; an attempt to ameliorate

HEVC’s performance on these images included using CU

sizes of 16× 16 pixels obtained by zero-padding the 13× 13
macro-pixels used in the PSNR evaluations. The results re-

mained modest for HEVC, indicating that such conventional

codec designs are not sufficient for lenslet image coding

Let us denote PSNRc the PSNR of the color channel c of

the decoded LF image. PSNRc is computed relative to the

raw 8-bit image as PSNRc = 10 · log2
255

2

MSE
, where

MSE =
1

Q

nM
∑

p=1

(

Mp − M̃p

)2

, (21)

where Q = nM × m is the total number of pixels in the

LF image; m is the number of pixels selected by the macro-

pixel (for the Lytro camera m = 199); nM = 434 × 541 is

the number of microlenses in the camera configuration, i.e.,

a microlens matrix of 434 rows and 541 columns obtained

after the macro-pixel alignment procedure; Mp is the original

macro-pixel and M̃p is the reconstructed macro-pixel. The

reported PSNR is calculated on YUV channels for the 13×13
macro-pixels, for the proposed as well as for all the reference

techniques, following the recommendations in [39]. In the

RDO block, the Lagrange multiplier λ depends on the selected

QP values and is computed as originally proposed in [58]:

λ = 0.85 · 2
QP−12

3 . (22)

The generic dictionary used in the proposed method, con-

sisting of d = 256 atoms, was trained on 4 images selected

from a different dataset [53], and used for the compression

of the 12 lenslet images in the EPFL test set [56]. Since

the resulting generic dictionary is known both by the en-

coder and decoder, the entire bit-length for the DL-based

method accounts only for the cost of encoding the sparse

coefficient matrix. One notes that increasing the size of the

dictionary increases the rate needed to encode the locations

of the non-zero coefficients. We found experimentally that

a dictionary of d = 256 atoms was sufficient to provide

a good rate-distortion trade-off and competitive performance

Page 8 of 33IEEE Transactions on Circuits and Systems for Video Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

ZHONG et al.: DICTIONARY LEARNING-BASED, DIRECTIONAL AND OPTIMIZED PREDICTION FOR LENSLET IMAGE CODING 9

TABLE II
PERFORMANCE GAINS OF THE PROPOSED METHOD COMPARED TO OTHER METHODS, IMAGES ‘HOUSE AND LAKE’, ‘PALAIS DU LUXEMBOURG’, ‘RED

AND WHITE BUILDING’, AND ‘SOPHIE AND VINCENT 1’ FROM [53] ARE USED TO TRAIN THE DICTIONARY

Img. vs. HMIntra vs. SSpred [54] vs. PseudoSeq [41] vs. PseudoH [42] vs. TIP2018 [55] vs. L1Pred [22]
ID PSNR Bitrate PSNR Bitrate PSNR Bitrate PSNR Bitrate PSNR Bitrate PSNR Bitrate

gain (dB) saving (%) gain (dB) saving (%) gain (dB) saving (%) gain (dB) saving (%) gain (dB) aving (%) gain (dB) saving (%)

I01 3.61 −62.98 2.21 −50.42 0.79 −23.93 0.70 −19.02 0.12 −31.44 1.07 −26.83

I02 2.63 −53.72 1.88 −43.48 1.61 −42.44 1.29 −38.51 1.18 −34.10 1.37 −34.03

I03 2.27 −46.61 1.88 −41.92 1.39 −36.36 1.34 −35.91 0.97 −26.58 1.34 −31.46

I04 2.22 −45.26 1.94 −42.14 0.89 −19.34 0.87 −17.96 0.19 8.15 0.98 −22.74

I05 3.18 −71.38 2.18 −60.51 1.95 −57.48 1.71 −55.54 1.42 −48.66 0.83 −28.16

I06 3.86 −85.39 2.04 −73.92 0.68 −30.74 0.49 −26.09 −0.63 38.24 0.26 −9.45

I07 2.41 −54.97 2.30 −46.50 3.04 −65.64 2.62 −63.46 3.39 −72.29 0.57 −17.50

I08 3.76 −90.61 3.11 −83.71 2.80 −78.60 2.49 −78.55 2.68 −80.23 0.52 −30.03

I09 5.20 −72.86 2.01 −53.63 1.29 −41.17 1.26 −39.96 −1.15 42.49 0.82 −22.87

I10 2.70 −66.28 2.58 −64.47 2.78 −70.19 2.65 −69.12 2.75 −69.80 1.31 −37.80

I11 4.15 −81.30 1.32 −47.96 4.27 −77.56 4.24 −77.15 4.08 −77.61 0.95 −31.26

I12 3.93 −74.17 1.58 −48.82 1.65 −53.27 1.64 −52.95 1.89 −59.79 1.13 −30.93

Avg. 3.33 −67.13 2.09 −54.79 1.93 −49.73 1.78 −47.85 1.41 −34.30 0.93 −26.92

of DL-prediction against the other intra-coding modes. In

this paper, for the DL-based method, we used (α2, β2) =
(−0.042, 1.839) and the sparsity s = 8, i.e., the positions

and the values of only 8 coefficients are transmitted to the

decoder for each macro-pixel at each specific QP, while

the reference algorithms transmit the residues for m pixels.

The 8 coefficient values are encoded relative to their mean,

i.e., for all the macro-pixels encoded using the DL-based

method, the mean values are collected in a matrix and are

transformed, quantized, and encoded using CABAC. Since

the coding precision of the mean has a great impact on the

rate-distortion performance, the mean values are encoded at a

QP value, denoted here q̄QP , which is different than the QP

value used for the rest of the image. In our experiments, we

used
[

q̄22 q̄27 q̄32 q̄37
]

=
[

0 2 6 12
]

, corresponding

to the four test QP values of 22, 27, 32, and 37 respectively.

B. Experimental results and analysis

Table II reports the BD-PSNR and BD-RATE computed

using Bjontegaard’s evaluation tools [59] and Fig. 8 shows

the RD curves, for the 12 LF images from the EPFL dataset.

One can notice from the figures that the proposed method

has a better compression performance than that of reference

algorithms. Overall, the average PSNR gain is 3.33 dB, 2.09
dB, 1.93 dB, 1.78 dB, and 1.41 dB, against HMINTRA,

SSPRED [54], PSEUDOSEQ [41], PSEUDOH [42], TIP2018

[55], respectively, corresponding to 67.13%, 54.79%, 49.73%,

47.85%, and 34.30% in terms of rate savings.

Compared to our previous L1PRED codec [22], the pro-

posed coding system yields an average PSNR gain of 0.93
dB and rate savings of 26.92%. The proposed coding system

introduces a dictionary learning-based method, replaces the

L1 minimization of the residual exploited in [22] by solving

completely different optimization problems that employ both

distortion and rate and make use of the L1 and L2 norms,

and proposes five different neighbourhood configurations for

directional prediction. Fig. 8 shows that at medium and high

rates, the proposed method reaches much better compression

performance compared to our previous design in L1PRED. In

particular, notable PSNR gains at higher bitrates demonstrate

the advantages of mode competition brought by the proposed

codec.

Fig. 9 shows the color-coded comparison and Fig. 10

presents the results of the comparison between the three

proposed intra-coding methods and the HEVC-based intra

prediction method, for the EPFL dataset and for the four QP

selected values. The results show that the DL-based mode

is selected between 20% to 55% for small QP’s which is

decreasing to 5% to 20% for large QP’s; HEVC-based intra

prediction methods are selected between 15% and 55% of the

cases; the DP method is selected between 15% and 40% of

the cases, while the OP method has a selection rate ranging

between 10% to 30% of the cases.

One can also notice that: (i) the DL-based mode is very

competitive for small QP ’s, while for large QP ’s the rate

of encoding the positions and the values of the nonzero

coefficients becomes too large compared to the other modes;

(ii) the DP and OP mode selection is increasing almost

linearly when increasing the QP values, replacing the DL-

based mode; (iii) as seen in Fig. 9, the DP and OP modes are

mostly used inside objects and are replacing the DL-based

mode at large QP ’s; HEVC’s DC and planar modes are used

around sharp edges, while the DL-based mode is used in flat

areas, e.g., see the I04 image in Fig. 9 (third row, second

column).

Fig. 11 shows the selection of each NC for the DP method.

One can notice that NC1 is the configuration selected most of

the time, i.e., between 35% and 45% of the cases, NC3 is the

second most-selected configuration, between 25% and 30%,

followed by NC2 and NC4, each between 10% and 20%,

while NC5 is selected between 5% to 10% of the cases. These

results are due to the configuration of the 5 neighbourhoods,

where for NC1 and NC3 we used M̃w = M̃5, while for

the other cases, one of the two macro-pixel from the previous

row and closest to M̃5, is shifted to the M̃w position, i.e.,

M̃w = M̃1 or M̃w = M̃5, see the original alignment in Fig. 7.

Although NC5 is the closest configuration to the microlens

camera configuration, it is the least selected configuration.

This is the result of merging two neighboring half macro-

pixel blocks resulted after an horizontal or vertical splitting of

blocks (see Fig. 6). Hence, the results in Fig. 11 show that
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Fig. 8. Rate-distortion curves of the proposed encoding framework and reference algorithms on EPFL dataset of LF images. Images ‘House and Lake’,
‘Palais du Luxembourg’, ‘Red and White Building’, and ‘Sophie and Vincent 1’ from [53] are used to train the dictionary.

NC1 and NC3 dominate directional intra-prediction, being

selected in 60−75% of the cases. One could decide to maintain

only NC1 and NC3 to reduce complexity, but that would yield

a penalty in terms of coding performance, as in 30− 35% of

the cases the other directional modes are more efficient in

rate-distortion sense.

C. Complexity analysis

The proposed framework was implemented on a machine

equipped with an Intel® Xeon® E5−1650 v3 3.50GHZ CPU

and 64GB of RAM memory, running a 64-bit Windows 8
Operating System. We evaluate the complexity of our proposed
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Fig. 9. (Top) Mode comparison for I01 (1st row) and I02 (2nd row), for increasing QP values (from left to right). (Bottom) Mode comparison for
I03, I04, I05, I06, I07 (3rd row) and I08, I09, I10, I11, I12 (4th row), for QP = 22. The blue colored pixels correspond to macro-pixels encoded with
a DL-based intra prediction mode, red to HEVC-based modes, yellow to OP modes, cyan to DP modes (the same color coding as in Fig. 10).
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Fig. 10. The selection of the optimal intra prediction mode for the 12 LF images in the EPFL dataset for increasing QP values (from left to right).
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Fig. 11. Intra prediction mode selection between the five NC of the DP, for the EPFL dataset and for increasing QP values (from left to right).
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method by the average encoding time for the four tested QP s

(22, 27, 32, and 37).

In the HEVC intra prediction mode, the best Coding Unit

(CU) is selected from 5 squared macroblock sizes (64 ×
64, 32 × 32, 16 × 16, 8 × 8, 4 × 4) by using RDO. However,

the 64×64 macroblock size was not used in our experiments,

restricting HEVC to select the best Coding Unit (CU) among

H = 4 macroblock sizes. For each CU, the runtime spent

on RDO, for obtaining the best mode from kd = 35 intra

directional predictions is the sum between the time spent on

the computation of block-wise distortion and the time spent

on bit-cost computation. Hence, the resulting total runtime for

HEVC is kHEV C ≈ H · kd · γHEV C = 140 · γHEV C , where

γHEV C is a parameter that depends on the method imple-

mentation, code optimizations, execution platform, memory

allocation of macroblocks of different size, etc.

In the proposed method, the CU is fixed to the size

of a macro-pixel. Therefore, macro-pixel prediction is the

dominant component in time complexity, which is computed

as the sum of complexities of the DL-based prediction,

OP prediction, and DP mode prediction. The dictionary is

trained off-line, meaning that for the DL-based mode, we

only consider the time complexity of macro-pixel prediction

and reconstruction, approximately equal to kDL ·γDOD, where

kDL = 1 since the method is applied only once, and γDOD

is a parameter which depends on the method implementation,

code optimizations, execution platform, memory allocation of

macroblocks, macro-pixel size, etc. Due to the distortion opti-

mization among OP modes, matrix multiplication followed by

distortion measurement lead to a complexity of approximately

2 · kOP · γDOD, where kOP = 32. The DP mode complexity

for one NC is kDP = 35, performed for each NC, resulting

in a complexity of approximately 5 ·kDP ·γDOD. Only two of

HEVC’s intra-prediction modes (DC and planar) are used in

our framework, resulting in a complexity of approximately

kDP−HEV C · γDOD, where kDP−HEV C = 2. Hence, the

resulting total runtime of the proposed method is of the order

kDOD ≈ (1 + 2 · 32 + 5 · 35 + 2) · γDOD = 242 · γDOD.

Although rather rudimentary, this complexity analysis indi-

cates that the ratio between the runtime of HEVC and the

runtime of the proposed method is approximately kcomp =
kHEV C

kDOD
= 0.5785 · γHEV C

γDOD
. One can notice that the above

time complexity estimation is not taking into account that: (i)

in HEVC, the runtime of a macroblock may differ for the

different sizes of macroblocks; (ii) in the proposed method,

each type of intra-prediction method can be characterized by

a different value of γDOD.

The experiments have shown that the average runtime on

the test set with HEVC is 2876 seconds (around 48 minutes),

while the average runtime with the proposed method is 670
seconds (around 11 minutes), indicating that the proposed

method is kexp ≈ 4.29 times faster than HEVC.

V. CONCLUSIONS

The paper proposes a novel compression framework for

efficient lenslet image coding. Firstly, we introduce a new

prediction mode, based on double-sparsity dictionary learning,

where each target macro-pixel is represented by a sparse

linear combination of dictionary atoms. A novel dictionary

generation method accounting for the coding cost of the

resulting macro-pixel representation is proposed. A generic

dictionary is constructed based on a set of representative LF

images which eliminates the need of sending the dictionary

to the decoder; only the coefficient values and their locations

need to be transmitted, significantly reducing the overall bit

cost. Secondly, new optimized linear prediction modes that

minimize the residual while accounting for the rate of the

resulting macro-pixel representation is proposed. Thirdly, new

directional prediction modes for macro-pixels are proposed

with the aim of capturing the spatial redundancies by means

of directional prediction. Mode selection is controlled by a

RDO framework which provides optimal intra coding for each

macro-pixel. Experimental results confirm the efficiency of

the newly introduced method, as the three proposed intra-

coding methods are selected for the large majority of macro-

pixels in the lenslet images. The proposed coding system

achieves significantly higher PSNR and rate savings compared

to reference codecs from the literature, with impressive rate

savings going as high as 67.13% and 34.30% against HEVC

and the state-of-the-art in lenslet image coding respectively.
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